MANONMANIAM SUNDARANAR UNIVERSITY TIRUNELVELI

M.Sc., ORGANIC CHEMISTRY

SYLLABUS

FROM THE ACADEMIC YEAR 2023-2024

Vision and mission of the department Vision

To develop a Centre of Excellence for teaching as well a research at par with national and international standards. Reach a position of distinction by offering first-class education and serving the community in relevant areas of interest to the rural areas.

Mission

- Provide an educational environment where students can realize their full potential in chemistry and attain quality education to face the challenges of the future.
- Provide a dynamic, challenging, and ethical environment for pursuing high-quality teaching, learning, research and service.

TANSCHEREGULATIONONLEARNINGOUTCOMES-BASEDCURRICULUMFRAMEWORK FOR POSTGRADUATE EDUCATION

FRAMEWORK FO	R POSTGRADUATE EDUCATION
Programme	M.Sc. ORGANIC CHEMISTRY
Programme Code	
Duration	PG – 2 YEARS
Programme	PO1: Problem Solving Skill
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices
	to solve business problems through research in Global context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-
	making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based perspectives to
	all organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership Skill
	Capability to lead themselves and the team to achieve organizational goals.
	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability skills
	in the competitive environment.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and a
	global perspective.
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.

Programme	PSO1 – Placement
Specific Outcomes	To prepare the students who will demonstrate respectful engagement with
(PSOs)	others' ideas, behaviors, beliefs and apply diverse frames of reference to
	decisions and actions.
	PSO 2 - Entrepreneur
	To create effective entrepreneurs by enhancing their critical thinking,
	problem solving, decision making and leadership skill that will facilitate
	startups and high potential organizations.
	PSO3 – Research and Development
	Design and implement HR systems and practices grounded in research that
	comply with employment laws, leading the organization towards growth and
	development.
	PSO4 – Contribution to Business World
	To produce employable, ethical and innovative professionals to sustain in
	the dynamic business world.
	PSO 5 – Contribution to the Society
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit.

Component wise Credit Distribution for M.Sc. Organic chemistry

Credits	Sem. I	Sem. II	Sem. III	Sem. IV	Total
Part A core	18	18	10	14	60
Part B					
(i) Elective (Discipline – Centric /					
Generic Skill) and MOOC	3	6	9	6	24
NPTEL online					
(ii) Soft Skill	2	2	2	2	8
(iii) Skill enhancement course / Value added courses	-	2	2	-	4
Part C					
(iii) Summer Internship / Industrial	-	-	2	-	2
Training					
Total	23	28	25	22	98

List of Courses:

Semester	Course Code	Title of the Course	Core/Elective/ Soft Skill	Credits
Ι	CHE C001	Fundamentals of Analytical Chemistry	CORE	3
Ι	CHE C101	Coordination and Nuclear Chemistry	CORE	3
Ι	CHE C201	Stereochemistry and Organic Reaction Mechanism	CORE	3
Ι	CHE C301	Thermodynamics, Electrochemistry and Chemical Kinetics	CORE	3
Ι	CHE C202	Organic Chemistry Practical-I	CORE	3
Ι	CHE C302	Physical Chemistry Practical-I	CORE	3
Ι	UOM S115	Lab Safety and First Aid	SOFT SKILL	2
Ι		Elective (One subject from the following)	ELECTIVE	3
Ι	CHE E001	Electronics and Computers for Chemists	ELECTIVE	
Ι	CHE E101	Inorganic Reaction Mechanism	ELECTIVE	
Ι	CHE E201	Name Reactions in Organic Chemistry	ELECTIVE	
Ι	CHE E301	Essentials of Statistical Thermodynamics	ELECTIVE	
II	CHE C002	Analytical Instrumentation	CORE	3
II	CHE C102	Main Group Elements and Inorganic Polymers	CORE	3
II	CHE C203	Organic Reaction Mechanism	CORE	3
II	CHE C303	Quantum Chemistry and Group Theory	CORE	3
II	CHE C003	Analytical Chemistry Practical-I	CORE	3
II	CHE C103	Inorganic Chemistry Practical-I	CORE	3
II	UOM S118	Spectroscopy Instrumentation	SOFT SKILL	2
II		Advanced methods of chemical analysis	Value added course	2
		Elective (One subject from the following)	ELECTIVE	3
II	CHE E002	Analysis of Complex materials	ELECTIVE	
II	CHE E102	Nuclear Chemistry	ELECTIVE	
II	CHE E202	Functional Group Transformation	ELECTIVE	
II	CHE E302	Macromolecular Chemistry	ELECTIVE	
II		MOOC-NPTEL	Online	3
III	CHE C601	Physical Methods in Chemistry	CORE	4
III	CHE C204	Organic Chemistry Practical-II	CORE	3
III	CHE C205	Organic Chemistry Practical-III	CORE	3
III	CHE E601	Biological Chemistry	ELECTIVE	3
III	CHE E604	Chemistry of Heterocycles, Organolithium and Asymmetric Synthesis	ELECTIVE	3
III		MOOC-NPTEL	Online	3
III	UOM \$147	Software packages for Chemists	SOFT SKILL	2
III		Advanced methods in Materials characterization	Value added course	2
III	UOM I001	Short time exposure to Research Institution/Industrial training (Summer)	Internship	2

IV	CHE C206	Orbital Symmetry, Photochemistry and Non- conventional techniques in Organic	CORE	4
		Synthesis		
IV	CHE C207	Chemistry of Natural Products	CORE	4
IV	CHE E204	Modern Synthetic Methodology and	ELECTIVE	3
		Spectrometric Identification of Organic		
		Compounds		
IV	CHE E603	Novel Reagents in Organic Synthesis	ELECTIVE	3
IV	UOM S117	Chemistry Databases	SOFT SKILL	2
IV	CHE C208	Project/Dissertation	CORE	6
		TOTAL CREDITS		98

METHOD OF EVALUATION:

Theory

Continuous Internal Assessment	External Examination	Total
25	75	100

Practical

Internal (Continuous	End Semester	Total
Assessment)	Examination	
60	40	100

Methods of assessment:

Recall (K1) – Simple definitions, MCQ, Recall steps, Concept definitions

Understand/ Comprehend (K2) – MCQ, True/False, Short essays, Concept explanations, Short summary or overview

Application (K3) – Suggest idea/concept with examples, Suggest formulae, Solve problems, Observe, Explain

Analyse (K4) – Problem-solving questions, Finish a procedure in many steps, Differentiate between various ideas, Map knowledge

Evaluate (K5) – Longer essay/ Evaluation essay, Critique or justify with pros and cons Create (K6)

- Check knowledge in specific or offbeat situations, Discussion, Debating or Presentations

SEMESTER I

Cou	rse code	CHE C001	FUNDAMI	ENTLS C	OF ANA	LYTI	CAL CH	EMISTRY	
Core	e/Elective/S	Supportive	Core Cred	lit - 3					
Pre-	requisite		Student	must	have	an	idea	about che	mical analysis
Cou	rse Object	ives:							
The	main objec	tives of this course	e are to:						
•	To interpret	t and analyze data	acquired durin	g testing	of samp	les			
• 7	To differen	tiate the nature of	samples and ch	noose the	correct s	samplin	g technio	que	
•	To understa	and the nature of cl	hemical reaction	ons					
• 7	To compare	e and contrast the	various titratio	n method	s with s	ound th	eoretical	knowledge f	or estimation
(of ions.							-	
Exp	ected Cour	se Outcomes:							
On t	he successf	ul completion of t	he course, stud	lent will b	e able to):			
1.	The stud	ents will be able	to understand	d and app	ply the	correct	method	to analyze	K1-K4
	analytical	l data							
2.	They will	l be able to emplo	y the correct to	echnique	to collec	et samp	les of an	y nature for	K2-K4
	analysis								
3.	Can eval	uate the accuracy	and summarie	es the me	thods a	dapted	for certa	ain practical	K3-K4
	activities								
4.	Can expla	ain and summarize	the various tit	trimetric t	echniqu	es used	for anal	ysis	K2
5.	To under	stand the chemical	equilibria to p	predict the	solution	n chem	istry		K5
6.	Compare	and contrast the v	arious method	s of titrati	on based	d on the	e nature o	of samples	K5 & K6
K1 -	Remember	r; K2 - Understand	l; K3 - Apply;	K4 - Ana	lyze; K	5 - Eval	luate; K6	- Create	
Unit	t :1	TREATMENT	OF ANALY7	FICAL D	ATA A	ND			15 hours
		SAMPLING							
Natu	ire of quant	itative measureme	ents and treatm	ent of dat	ta. Basic	statist	ical conc	epts – Errors	- random and
-		an, median, precis				-			
		nfidence interval					Student'	s t, F tests.	Reliability of
	C C	ion and correlation	- •						
	-	nical standards, ty	-	-				rocess, Analy	tical Method
		emical Measureme			-	-		1 '	·1·1·, ·
	-	mpling methods f	or solid, liquid	is and gas	ses. Gro	ss samj	pling, Sa	mpler's respo	onsibility and
pitfa	uis, nazards	of sampling.							

Un	it:2	CHEMICAL EQUILIBRIA AND NEUTRALIZATION REACTIONS	15 hours
Che	emical Equil	bria - Activity concept, equilibrium constant and applications, ionisation const	ants of acids
and	l bases. Conc	ept of pH, hydrolysis of salts, hydrolysis constant and degree of hydrolysis, But	ffers – types,
ran	ge and capac	ity, dissociation of polyprotic acids, common ion effect, salt effect.	
Nei	utralization	reactions - Theory of acid-base titrations, theory and choice of indicators	, mono and
pol	yprotic syste	ms, titration curves and feasibility of reactions, calculation of pH during titration	ns
Un	it:3	REDOX TITRATION, PRECIPITATION TITRATIONS AND	15 hours
		COMPLEXOMETRIC TITRATIONS	
Rec	dox titration	- Redox potentials, theory and feasibility of redox titration, calculation of	potentials a
diff	ferent stages	of titrations, redox indicators, their choice and applications.	
Pre	cipitation tit	rations - Theory and types, Mohr, Volhard and Fajan's methods. Adsorption	n indicators
the	ory, choice a	nd applications.	
Co	mplexometri	c titrations – Theory, Stepwise and overall formation constants, Titrations invol	lving chelate
(EI	DTA). Metal	lochromic indicators – Theory and Choice. Masking and demasking and extrac	tive methods
Dir	ect, indirect	(including substitution) titration and applications.	
		Contemporary Learning	15 hours
Exp	pert lectures,	YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars –	
wel	binars for str	engthening the subject matters. Assignment and class room seminar	
		Total Lecture hours	45 hours
Tex	xt Book(s)		
1.	Fundamen	tals of Analytical Chemistry - Skoog, West and Holler, Saunders College P	ublishing, V
	Edition, 19	991, and VII Edition, 1996.	
2.	Text Book	of Quantitative Inorganic Analysis - A.I. Vogel, ELBS, III Edition, 1976, an	d IV Edition
	1985		
3.	Vogel's Te	ext Book of Quantitative Chemical Analysis – A.I. Vogel, Pearson Education Lt	d, VI
	Edition, 20	001	
4.	Analytical	Chemistry – Gary D. Christian, John Wiley & Sons, INC, V Edition, 2001	
	Statistics f	or Analytical Chemistry – J.C. Miller and J.N. Miller, Ellis Harwood, Chicheste	r, 1984.
5.			
5.			
5.	ference Boo		
5.	-	ks al Analysis – Gary D. Christian & James, E. O'Reilly, Allyn & Bacon Inc, II Ec	lition, 1986
5. Ref	Instrument		lition, 1986
5. Re	Instrument Analytical	al Analysis – Gary D. Christian & James, E. O'Reilly, Allyn & Bacon Inc, II Ec	
 5. Ref 1 2 	Instrument Analytical	al Analysis – Gary D. Christian & James, E. O'Reilly, Allyn & Bacon Inc, II Ec Chemistry – J.G. Dick, McGraw Hill Publishers, 1975 Chemistry- An Introduction – Skoog, West & Holler, Saunders College Publish	
 5. Ref 1 2 	Instrument Analytical Analytical VI Edition	al Analysis – Gary D. Christian & James, E. O'Reilly, Allyn & Bacon Inc, II Ec Chemistry – J.G. Dick, McGraw Hill Publishers, 1975 Chemistry- An Introduction – Skoog, West & Holler, Saunders College Publish	ing
5. Ref 1 2 3	Instrument Analytical Analytical VI Edition Instrument	al Analysis – Gary D. Christian & James, E. O'Reilly, Allyn & Bacon Inc, II Ec Chemistry – J.G. Dick, McGraw Hill Publishers, 1975 Chemistry- An Introduction – Skoog, West & Holler, Saunders College Publish ,1994.	iing 5.

Rel	lated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	https://youtu.be/dlDnzswhTsU-Data Analysis and decision making
2.	https://youtu.be/ozEWJAk4JCc-Acid Base Reactions
3.	https://www.youtube.com/watch?v=n9wUdgxCLMQ-Neutralizations Reactions
4	https://www.youtube.com/watch?v=flCQz0QjPmA-Redox Reactions
5.	https://youtu.be/dtTx5f9zdm0- Quantitative Methods in Chemistry
	·

Марр	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	М	S	L	S	S	S	L	S	L	
CO2	S	S	S	S	М	М	S	S	S	S	
CO3	М	S	S	М	L	М	S	L	S	S	
CO4	S	S	S	S	L	S	S	L	М	L	
CO5	S	S	S	S	М	S	S	М	L	М	

*S-Strong; M-Medium; L-Low

Semester - I	CHE C101	COORDINATION AND NUCLEARCHEMISTRY	
Core/Elective	Core Credit	-3	
/Supportive			
	Students must	t know about the fundamental terms of coordination chemist	try, Werner's
Pre-requisite	theory, Valence	ce Bond Theory, basics of nucleus, nuclear particles and nuclear	forces.
Course Objectiv	/es:		
The main objecti		e are to:	
		perties and bonding nature of coordination compounds	
• Illustrate the b	basic concept of	theories of coordination complexes	
	•	e on Atomic states, microstates and term symbol	
-	-	Sugano diagrams for prediction of absorption band	
	e	clear models and their features	
	ear reactions and		
		ear chemistry in various fields	
Expected Cours			
-		he course, student will be able to:	
Understand	and con	npare different theories involve in	K1-K2
thecoordina	ation complexes		
Interpret th	e electronic and	magnetic properties of coordination	K2-K4
compounds	s based on CFT		
Knowledge	e on the modern	M. O theory and its application in conscious understanding of	K2-K5
bonding of	metal complexe	S	
Calculate r	uclear spin, I va	lue of elements	K3-K4
		ear reactions and to determine activity by	K5-K6
various tec	*		
K1 - Remem	ber; K2 - Unders	stand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create	
UNIT:1 STR	UCTURAL AS	PECTS AND CRYSTAL FIELD THEORY 1	5 hours
Crystal field theo	ory - crystal field	splitting patterns in octahedral, tetrahedral, tetragonal, square	planar,
geometries – CFS	SE, Factors af	fecting CFSE- Interpretation of electronic spectra and magnetic	c properties –
Spectrochemical	series – Jahn-Te	eller effect; Effect of chelation and stability of complexes - The	ermodynamic
aspects of compl	lex formation –l	Determination of stability constants by spectrophotometric, p	oolarographic
and potentiometr	ic methods – Ha	rd and soft acids and bases	

UNIT:2 MOLECULAR ORBITAL THEORY

Theoretical failure of the Crystal Field Theory - Nephelauxetic effect - Evidences for the metal-ligand orbital overlap; the ligand field theory; Molecular Orbital - application of group theory to tetra coordinate and hexa coordinate systems - M.O. theory as applied to non-bonding and anti-bonding complexes – Calculation of Dq, B and β parameters. Colour of transition metal complexes, types of electronic spectra - d-d transition, Charge transfer spectra, selection rule and its relaxation, Term states for dn ions, energy diagram, - Orgel and Tanabe- Sugano diagrams – Spin-Orbit coupling

UNIT:3 NUCLEAR CHEMISTRY

15 hours

15 hours

15 hours

Models of nucleus – Modes of radioactive decay: orbital electron capture: nuclear isomerism, internal conversion, Nuclear reaction: Types, reactions, cross section, Q- value, threshold energy, compound nucleus theory, High nuclear reactions, nuclear fission and fusion reactions as energy sources; direction reactions, photonuclear and thermo nuclear reactions, detection and determination of activity by cloud chamber, nuclear emulsion, bubble chamber, G.M counter – Scintillation and Cherenkov counters. Application of radioactivity in the chemistry- medical field, age determination and in agriculture, Neutron activation analysis, isotopic dilution analysis, radiometric titrations, Nuclear reactors, the breeder reactor, nuclear reactors in India

Contemporary Learning

Expert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters. Assignment and class room seminar

		Total Lecture hours	45 hours
		Text Book(s)	
1.	F.A. C	Cotton & G. Wilkinson - Advanced Inorganic Chemistry, 3rd and 4th Ed., John Wiley	
2.	Huhee	y, J.W Inorganic Chemistry, 4th Edition - Harper and Row	
3.	J. D. I	ee, Concise Inorganic Chemistry, 5th edition, John Wiley	
4.	A. K. 1	Das Vol. 1 & 2, Fundamentals of Inorganic Chemistry	
5.	Grego	ry R Choppin; Jan-Olov Liljenzin; Jan Ryd berg, Radiochemistry and Nuclear Che	emistry, 3rd
	Edition	n, 2002, Butterworth-Heinemann	
	Refere	nce Books	
1.	K.F. P	urcell & J.C. Kotz - Inorganic Chemistry, Saunder Company	
2.	S.F.A.	Kettle - Coordination Compounds	
3.	B.N. F	riggis - Introduction to Ligand Fields	
4.	A.B.P.	. Lever - Inorganic Electronic Spectroscopy, Elsevier	
5.	C.J. Ba	alehausen - Introduction to Ligand Field Theory, McGraw Hill, 1962.	
6.	G. Fri	edlander, G. Herrmann (auth.), Attila Vértes, Sándor Nagy, Zoltán Klencsár, Rezső	ó G. Lovas,
	Frank	Rösch (eds.), Hand Book of Nuclear Chemistry, 2011, springers	

	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	Coordination complexes : <u>http://www.infocobuild.com/education/audio-</u>
	video-courses/chemistry/CoordinationChemistry-IIT-Kharagpur/lecture- 18.html
2.	Nuclear shell model: YouTube Videos: https://nptel.ac.in/courses/115/104/115104043/
3.	GM counters lecture Notes: https://qa.ff.up.pt/rq2020/Bibliografia/etc/geiger1.pdf

Mapp	Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	М	S	М	S	М	S	L	М	L	L		
CO2	S	S	S	S	S	М	L	М	L	L		
CO3	М	М	S	S	М	М	L	S	М	L		
CO4	S	S	S	S	S	S	М	S	L	L		
CO5	S	S	L	М	М	L	S	L	М	L		

*S-Strong; M-Medium; L-Low

Course Code	CHE C201
Title of the	STEREOCHEMISTRY AND ORGANIC REACTION MECHANISM
Course	
Course	Core Credit-3
Pre-requisites, if	Students should know about the fundamental aspects on stereochemistry, electrophilic
any	and nucleophilic substitution reactions.
Course	• Realize the significance and relevance of stereochemistry
Objectives	• Role of electrophilic as well as nucleophilic substitution reaction in organic synthesis
	• Realize the concept of selectivity in organic transformations
	• Understand the concept of reaction mechanism
	• To visualize the concept of substitution Vs reactivity
Course	On the successful completion of the course, student will be able to:
Outcomes	
CO 1	Learn about different aspects involved in stereochemistry and the relevance of the
	topic in all branches including biology (K1-K5)
CO 2	Understand the basic concept and origin of asymmetric synthesis (K2-K4)
CO 3	Learn about the significance of reaction intermediates and the rate of the reaction
	(K3-K5)
CO 4	Selectivity and synthetic utility of substitution reactions (K2-K6)
CO 5	Understand the relevance of conformation and reactivity in organic synthesis (K5 &
	K6)
K1-Remember; K	2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Create

Unit I

STEREOCHEMISTRY

15 hours

Chirality, Symmetry elements, Asymmetric and Dissymmetric chiral molecules. Calculation of number of optical isomers. Stereochemistry of mono and di-substituted cyclopropane, cyclobutane, cyclopentane and cyclohexane. Stereochemistry of tri-substituted cyclopentane, tri-substituted pentane and tetra-substituted hexane. Description of various types of optically active compounds including allenes, cumulenes, spiranes, biphenyls, *trans*-cyclooctene, Ansa compounds cyclophanes and helicenes.

Compounds containing two asymmetric centers-Erythro and threo isomers. Conversion of Fischer projection into perspective forms. Erythro and Threo-Inter conversion of Fischer to Sawhorse and Newman projections. Zig-Zag representation of glucose. Interpretation of homotopic, enantiotopic and diastereotopic atoms and faces. Origin of *Re-* and *Si*-faces. Prochiral chiral carbon. R & S nomenclature of simple compounds, allenes, spiranes, biphenyls, Ansa compounds and cyclophane systems. Optical rotation and enantiomeric excess (ee). Stereospecific and Stereoselective reactions.

Asymmetric Synthesis-Crams rule and Felkin Anh Model. Conformational analysis of cyclohexane and disubstituted cyclohexanes.

Unit II	ALIPHATIC NUCLEOPHILIC SUSBTITUTION	15 hours						
Mechanism of nuc	leophlic substitution reaction: SN ¹ , SN ² and SN ⁱ mechanisms. Substrate	, Nucleophiles,						
Solvent and leavin	g group effects and neighboring group participation (NGP). Substitution	on at carbonyl,						
vinylic and bridgel	head system. Substitution with ambident nucleophiles: "O" Vs "C" alky	vlation. Role of						
LDA, crown ethers	and phase transfer catalysts (PTC) in nucleophilic substitution reactions							
Generation of end	plates, enolate selectivity (Kinetic Vs Thermodynamic), alkylation o	f enolates and						
stereochemistry of	enolate alkylation. Mechanism of ester hydrolysis							
Unit III	AROMATIC ELECTROPHILIC & NUCLEOPHILIC	15 hours						
	SUSBTITUTION REACTIONS							
Aromatic electrop	nilic substitution: mechanism of nitration, sulfonation, Friedel-Crafts	alkylation and						
acylation reactions	s. Synthesis of di- and tri- substituted benzenes from benzene or m	ono-substituted						
benzenes. Haworth	reaction (for naphthalene), Scholl reaction, Vilsmeier-Haack formylation	on, Gattermann						
reaction, Reimer-T	iemann and Bischler-Napieralski reactions.							
Aromatic nucleopl	nilic substitution in aryl halides by Meisenheimer complex mechanism	n and benzyne						
mechanism. Variou	as methods of benzyne generation and reactions of benzynes (inter and i	ntramolecular).						
Reactions of ary	diazonium salts. Zeigler alkylation, Vicarious Nucleophilic Subst	itution (VNS),						
Chichibabin and So	chiemann reactions.							
Hammett and Ham	mett-Taft equation-Significance of reaction constant (ρ) and substitue	nt constant (σ).						
Methods of determ	ining reaction mechanism.							
Contemporary Le	arning	15 hours						
Expert lect	ures, YouTubes Videos, Animations, NPTEL, MOOC videos, onl	ine seminars						
webinars for streng	thening the subject matters. Assignment and class room seminar							
	Total lecture hours	45 hours						
Recommended								
Text/Reference	 Carey, F. A & Giuliano, R. M. (2012); Organic Chemistry 8th Ec Hill (I) Pvt Ltd 	lition, McGraw						
Books	 Bruice, P. Y. (2014); Organic Chemistry, 7th Edition, Dorling Kinde (I) Pvt Ltd 	ersley						
	 Wade, Jr, L. G. & Singh, M. S. (2008); Organic Chemistry 6th E Kindersley (I) Pvt Ltd 	dition, Dorling						
	• Finar, I. L. Vol 2 (2018); Organic Chemistry: Stereochemistry and of Natural product, III rd Edition, Pearson	l the Chemistry						
	• Smith, M. B & March, J. (2006); March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6 th Edition, John Wiley & Sons, Inc.							
	• Kalsi, P. S & Oza, R. S. (2018); Organic Reactions: Stereochemistry and							

- Mechanism, New Age International
 Clayden, J, Greeves, N. Warren, S. (2017); Organic Chemistry, 2nd Edition, Oxford University Press.
- Graham Solomons, T. W, Fryhle, C. B. (2014); Organic Chemistry, 10th Edition, Wiley.

Methods of assessment:

Recall (K1) – Simple definitions, MCQ, Recall steps, Concept definitions **Understand/ Comprehend (K2)** – MCQ, True/False, Short essays, Concept explanations, Shortsummary or overview

Application (K3) – Suggest idea/concept with examples, Suggest formulae, Solve problems, Observe, Explain Analyse (K4) – Problem-solving questions, Finish a procedure in many steps, Differentiatebetween various ideas, Map knowledge

Evaluate (**K5**) – Longer essay/ Evaluation essay, Critique or justify with pros and cons **Create** (**K6**) – Check knowledge in specific or offbeat situations, Discussion, Debating or Presentations

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	L	М	М	S	S	М	М	М	L	М
CO2	М	М	М	S	S	М	М	М	L	L
CO3	L	L	М	S	S	М	S	L	L	М
CO4	L	М	L	S	М	М	L	М	L	L
CO5	L	L	М	S	М	М	М	L	L	L

Mapping with Programme Outcomes*

*S-Strong M-Medium L-Low

Core/	Course	Title of the Course	Credits
Elective/ Supportive	Code		
Core	CHE C301	THERMODYNAMICS, ELECTROCHEMISTRY AND	3
		CHEMICAL KINETICS	
Course O	bjectives:		
The main	objectives of this	s course are,	
•	de basics and kn e equilibria.	nowledge related to thermodynamics in terms of system, chemic	cal potential
		and principles of electrochemistry in terms of electrolytic c electromotive force.	conductance,
	kinetic theories n reactions.	and factors affecting reaction rates, complex reactions, fast re	eactions and
		the fundamental knowledge in thermodynamics, electrocher rent areas of chemistry and emerging problems in basic science.	emistry and
	nstrate the abilit	y to do some independent research and use some experimental	resources at
Pre-requisite	es, if any:		
		UG level fundamental aspects on thermodynamics, electroc problems solving.	hemistryand
Course Outc			
		se successfully, the students will be able to	
• CO2: Une		rmodynamics, electrochemistry and chemical kinetics. (K1) ationships of thermodynamics, electrochemistry and chemical es. (K2)	kinetics in
• CO3: App	-	ge of thermodynamics, electrochemistry and chemical kinetics	to different
	alyze and Evalu K4 and K5).	ate research problems in thermodynamics, electrochemistry and	nd chemical
electroche	mistry and chem	epts to give contribution to dimensional growth for thern nical kinetics. (K6) stand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create	nodynamics,
UNITS			
UNIT - I: Ki	netic Theory an	nd Thermodynamics (9 Hor	urs)
Thermodynar	nic description	of various types of process, Laws, state and path function Sec	cond law of
thermodynam	nics, Maxwell's	relations and thermodynamic equations of state, (CP- CV)	in terms of
coefficient of	expansion and c	coefficient of compressibility.	
Closed and c	open systems, pa	artial molal quantities and experimental determination, chemic	al potential,
	n and Gibbs-ma	argules equation, variation of chemical potential with temp	erature and
pressure.			

Real systems, fugacity and activity, activity coefficients and their electrochemical and graphical determination, standard states for gases, liquids, solids and solutions, Lewis – Randall rule and its applications.

(1)

UNIT - II: Electrochemistry-I

Nernst Equation, Redox System, Electrolytic conductance of Kohlrausch's law and it is Applications. Theory of electrolytic dissociation – ionic activity and activity coefficients, Debye

-Huckel-Onsagar theory of interionic attraction and its refinements. Influence of ionic atmosphere on the conductivity of electrolytes, equation for the equivalent conductivity of electrolytes – Experimental verification of the equation. Electrode equilibrium - Thermodynamics, electrodes and electrode potentials, electrochemical cells, electromotive force.

UNIT - III: ELECTROCHEMISTRY-II (8 Hours)

Polarization and overpotential – concentration polarization – Polarography. Electrochemical polarization – Butler – Volmer equation for one electron transfer reaction and Tafel equations. Ionic equilibria – conductometric and potentiometric titrations.

UNIT - IV: Chemical Kinetics

Mechanisms of complex reactions – equilibrium and steady state approximation; Theories of reaction rates - collision theory, transition state theory and its thermodynamic aspects - enthalpy, entropy and free energy of activations; Kinetics of complex reactions - opposing, parallel and consecutive reactions; Unimolecular reactions; Kinetic isotopic effects; Salt effects; Potential energy surfaces and reaction coordinates. Factors determining reaction rates in solution - solvent, dielectric constant and ionic strength; Fast reactions - T-jump, flow methods, pump-pulse, relaxation methods.

UNIT – V: Adsorption and Colloids

Langmuir, Freundlich, BET and Gibbs adsorption isotherms; Surface films; Homogeneous and Heterogeneous catalysis; Reactions on surfaces - Simple decomposition, Bimolecular reactions by Langmuir-Hinshelwood and Eley-Rideal mechanisms.

Surface tension, viscosity. Self-assembly. Physical chemistry of colloids and micelles.

Contemporary Learning

Expert lectures, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters. Assignment and class room seminar

Total Lecture hours

Reference Books:

- 1. Thermodynamics for chemists, S. Glasstone, Affiliated East West
- 2. Chemical Thermodynamics, I. M. Klotz and R. M. Rosenberg, Benjamin, Menlo Park, 1972.
- 3. Thermodynamics, J. C. Kuriakose, J. Rajaram.
- 4. An Introduction to Electrochemistry, S. Glasstone, An East West Edition.
- 5. Modern Electrochemistry Vol. I J. O' M Bockris and A. K. N. Reddy, Plenum, New York, 1970.
- 6. Theoretical Electrochemistry, LI. Antropov, Mir. Publication.

(10 Hours)

(10 Hours)

15 hours

(8 Hours)

45 hours

.L.

- 7. Chemical Kinetics, K. J. Laidler, 2nd Ed, McGraw Hill.
- 8. Kinetics and mechanism, John. W. Moore, Ralph. G. Pearson, 3rd Ed, Wiley, 1981

Text Books:

- 1. Physical Chemistry, G. M. Barrow, 4 th Ed., McGraw Hill.
- 2. Physical Chemistry, P. W. Atkins, 4 th Ed., Oxord.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1. https://www.youtube.com/watch?v=S73srEM_4QA&list=PL9m2Lkh6odgK6pbaO7Yddu_jPz YIK8OM5
- 2. https://www.youtube.com/watch?v=yrnQTAc_S80
- 3. https://www.youtube.com/watch?v=PH1DR0c-jqw
- 4. https://www.youtube.com/watch?v=dNkDAgg9MUY
- 5. https://www.youtube.com/watch?v=pm3HpBfooMA

https://www.youtube.com/watch?v=XaId7WR0mGo

Mapping with Programme Outcomes: (S-Strong, M-Medium, L-Low)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	S	М	L	М	М	S	S	S	М
CO 2	М	S	S	М	S	L	М	L	S	М
CO 3	М	М	L	S	S	М	М	S	S	S
CO 4	М	S	L	S	М	М	L	S	L	М
CO 5	S	М	М	S	М	L	L	М	S	S

Course Code	CHE C202	
Title of the	ORGANIC CHEMISTRY PRACTICAL	- I
Course		
Course	Core Credit- 3	60 hours
Pre-requisites,	Students should know the basic techniques used in the c	organic laboratory for
if any	preparation, purification and identification of organic compoun	ds.
Course Objectives	• To understand the basic techniques used in organic laborate purification of organic compounds	ory for preparation and
	• To compare theory with experiment by performing procompounds	reparation of organic
	• To understand the reaction mechanism and intermediate reaction.	s involved in organic
	• Able to visualize the organic transformations in the reaction	flask.
Course	On the successful completion of the course, students will acqui	re knowledge of:
Outcomes		
CO 1	Good laboratory practices in handling laboratory glasswares an	d chemicals (K1-K6)
CO 2	To gain experience in the maintenance laboratory notebook (K	2-K4)
CO 3	Well versed with common laboratory techniques such as re	flux, recrystallization,
	vacuum filtration, aqueous extraction and melting point determ	ination (K2-K5)
CO 4	To understand the difficulties involved in the preparation of or	ganic compounds (K1-
	K5)	
CO 5	Understand the differences in theory and practical concept (K4	-K6)
K1-Remember; K	K2 -Understand; K3 -Apply; K4 -Analyze; K5 -Evaluate; K6 -Create	
Unit I		
Single Stage Prej	parations	
1. Preparation of	of <i>p</i> -benzoquinone	
*	of 2,5-ditertiarybutylhydroquinone	
^	of 4,6-dimethylcoumarin	
-	of dibenzyllidene acetone	
-	of 2,4-dinitrotoluene of benzhydrol	
-	of picric acid	
Unit II		
Double Stage Pro	eparations	
0	of <i>p</i> -bromoaniline from acetanilide	
-	of <i>p</i> -nitroaniline from acetanilide	
-	of <i>m</i> -nitrobenzoic acid from methylbenzoate	
-	of symmetric tribromo benzene and 2,4,6-tribromo iodo benzene	from aniline

Reading List (Print and Online)	 <u>https://www.youtube.com/watch?v=1oO-fQvMrkE</u> <u>https://www.youtube.com/watch?v=oROSQnzSdZE</u>
Recommended	• <u>Vogel, A.I.; Tatchell, A. R.; Furnis</u> , B. S.; <u>Hannaford</u> , A. J.; <u>Smith</u> , P.W.G.
Text/Reference	(2003); Vogel's Textbook of Practical Organic Chemistry, 5 th Edition, Pearson
Books	Education

Method of Evaluation:

Internal (C	Continuous	End Semester	Total	Grade
Assess	ment)	Examination		
6	C	40	100	A, A+, B, D, D+, O

Methods of assessment:

Recall (K1) – Simple definitions, MCQ, Recall steps, Concept definitions **Understand/ Comprehend (K2)** – MCQ, True/False, Short essays, Concept explanations, Short summary or overview

Application (K3) – Suggest idea/concept with examples, Suggest formulae, Solve problems, Observe, Explain Analyse (K4) – Problem-solving questions, Finish a procedure in many steps, Differentiate between various ideas, Map knowledge

Evaluate (**K5**) – Longer essay/ Evaluation essay, Critique or justify with pros and cons **Create** (**K6**) – Check knowledge in specific or offbeat situations, Discussion, Debating or Presentations

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	М	М	М	М	М	М	М	М	S
CO2	М	L	М	М	М	М	М	М	L	L
CO3	М	М	М	L	S	М	L	L	М	М
CO4	L	М	L	М	М	L	М	М	L	L
CO5	М	М	М	М	М	L	М	L	L	L

Mapping with Programme Outcomes*

*S-Strong M-Medium L-Low

Elective/	Course	Title of the Course	Credits
Supportive	Code		
Core	CHE C302	PHYSICAL CHEMISTRY PRACTICAL – I	3
Course C	bjectives:		
The main	objectives of this	s course are,	
To provi	de experimental k	knowledge on adsorption isotherm and heat of neutralization.	
	**	lications of conductivity experiments to determine solubil	lity product
	-	and strong electrolyte behavior. tions of EMF measurements to determine pH of a solution a	nd solubility
product.	sinze the applied	tions of Ewir measurements to determine pit of a solution a	ind solubility
• To demo		ion kinetics of ester hydrolysis, simple eutectic system and ec	quilibrium in
		o do some independent experiments and learn recent develop	ments in the
		end of the course.	
Pre-requisit	es, if any:		
Students sho	uld know the UG	level fundamentals of physical chemistry practicals like solution	n preparation
normality, m	olarity, solution d	lilution, etc.	
Course Out	comes:		
After con	pletion of this co	urse successfully, the students will be able to	
• CO1: Re	call the basics and	l practices of physical chemistry practicals. (K1)	
• 001. 10	call the basies alle	· practices of physical chemistry practicals. (11)	
		rimental aspects of different areas of physical chemistry. (K2)	
CO2: UnCO3: Ap	derstand the expe ply the knowledg		problems in
 CO2: Un CO3: Ap basic scie 	derstand the expe ply the knowledg nces. (K3)	rimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging	
 CO2: Un CO3: Appendix science CO4: Appendix science 	derstand the expe ply the knowledg nces. (K3)	primental aspects of different areas of physical chemistry. (K2)	
 CO2: Un CO3: Appearing basic science CO4: Arr K5). 	derstand the expe ply the knowledg nces. (K3) alyze and Evalua	rimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging	stry. (K4 and
 CO2: Un CO3: Appendix science CO4: Arr K5). CO5: Crossing 	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts	arimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemis	stry. (K4 and
 CO2: Un CO3: Appendix science CO4: Arr K5). CO5: Croc K1 - Rem 	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts ember; K2 - Und	arimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemist is to expand the dimensions of the experimental physical chemistry	stry. (K4 and
 CO2: Un CO3: Apbasic scie CO4: ArK5). CO5: CroK1 - RemExperiments 	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts ember; K2 - Und (60 Hours)	arimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemist is to expand the dimensions of the experimental physical chemistry	stry. (K4 and
 CO2: Un CO3: Appendix science CO4: Art K5). CO5: Croc K1 - Rem Experiments 1. Adsorption 	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts ember; K2 - Und (60 Hours) n- verification of I	arimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemis is to expand the dimensions of the experimental physical chemistr erstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create	stry. (K4 and
 CO2: Un CO3: Appendix science CO4: Art K5). CO5: Croc K1 - Rem Experiments 1. Adsorption 	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts ember; K2 - Und (60 Hours) h- verification of H emistry – heat of	Arimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemist is to expand the dimensions of the experimental physical chemistric erstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create Freundlich adsorption isotherm	stry. (K4 and
 CO2: Un CO3: Appendix science CO4: Art K5). CO5: Croke K1 - Rements Adsorption Thermo ch Conductive 	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts ember; K2 - Und (60 Hours) h- verification of H emistry – heat of	A prime terminental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemistry to expand the dimensions of the experimental physical chemistry erstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create Freundlich adsorption isotherm neutralization of a strong acid	stry. (K4 and
 CO2: Un CO3: Appendix science CO4: Art K5). CO5: Croke K1 - Rements Adsorption Thermo ch Conductiv (a) Cell 	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts ember; K2 - Und (60 Hours) h- verification of H emistry – heat of ity constant determin	A prime terminental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemistry to expand the dimensions of the experimental physical chemistry erstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create Freundlich adsorption isotherm neutralization of a strong acid	stry. (K4 and
 CO2: Un CO3: Appendix science CO4: Art K5). CO5: Crock K1 - Rem Experiments 1. Adsorption 2. Thermo ch 3. Conductive (a) Cell (b) Solu 	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts ember; K2 - Und (60 Hours) n- verification of I emistry – heat of ity constant determining bility product of a	Arrimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemis is to expand the dimensions of the experimental physical chemistr erstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create Freundlich adsorption isotherm neutralization of a strong acid	stry. (K4 and ry. (K6)
 CO2: Un CO3: Application of the second s	derstand the expeription of Hermitian determined by the knowledgences. (K3) alyze and Evaluate and Evaluate and Evaluate and concepts and evaluate the concepts and the concept of the constant determined by the	Arrimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemistry to expand the dimensions of the experimental physical chemistry erstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create Freundlich adsorption isotherm neutralization of a strong acid hation a sparingly soluble salt	stry. (K4 and ry. (K6)
 CO2: Un CO3: Apbasic scie CO4: ArK5). CO5: Croken Construction Conductive (a) Cell (b) Solution (c) Action (c) Construction 	derstand the expeription of Hermitian determined for the second determined of the experimentation of Hermitian determined for the emistry – heat of the e	A primental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemistry is to expand the dimensions of the experimental physical chemistry erstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create Freundlich adsorption isotherm neutralization of a strong acid hation a sparingly soluble salt (strong acid vs strong base; strong base vs weak acid), precipitation areas of physical chemistry is the strong base vs weak acid).	stry. (K4 and ry. (K6)
 CO2: Un CO3: Apbasic scie CO4: ArK5). CO5: CraK1 - Rem Experiments Adsorption Conductiv (a) Cell (b) Solut (c) Acid (bard) (d) Diss 	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts ember; K2 - Und (60 Hours) n- verification of H emistry – heat of ity constant determin bility product of a l – base titration (um chloride vs m ociation constant	arimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemist is to expand the dimensions of the experimental physical chemistricerstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create Freundlich adsorption isotherm neutralization of a strong acid nation a sparingly soluble salt (strong acid vs strong base; strong base vs weak acid) ,precipita agnesium sulphate)	stry. (K4 an
 CO2: Un CO3: Application of the second s	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts ember; K2 - Und (60 Hours) n- verification of H emistry – heat of ity constant determin bility product of a l – base titration (um chloride vs m ociation constant	rimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemistries to expand the dimensions of the experimental physical chemistrierstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create Freundlich adsorption isotherm neutralization of a strong acid hation a sparingly soluble salt (strong acid vs strong base; strong base vs weak acid), precipitating agnesium sulphate) of a weak acid- verification of Ostwald's dilution law	stry. (K4 an
 CO2: Un CO3: Application of the second s	derstand the expe ply the knowledg nces. (K3) alyze and Evalua eate new concepts ember; K2 - Und (60 Hours) n- verification of I emistry – heat of ity constant determin bility product of a l – base titration (um chloride vs m ociation constant fication of Onsage	rimental aspects of different areas of physical chemistry. (K2) ge of experimental physical chemistry to existing and emerging ate the research problems in different areas of physical chemistries to expand the dimensions of the experimental physical chemistrierstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create Freundlich adsorption isotherm neutralization of a strong acid hation a sparingly soluble salt (strong acid vs strong base; strong base vs weak acid), precipitating agnesium sulphate) of a weak acid- verification of Ostwald's dilution law	stry. (K4 an

5. Reaction kinetics

Hydrolysis of ester- comparison of strength of acids, determination of hydrolysis constant.

- 6. Phase rule and thermodynamics Simple eutectic
- 7. Equilibrium in solutions
 - a) Association factor of benzoic acid in benzene and water
 - b) KI + I2 = KI3. Equilibrium constant in aqueous media

Text Books:

- 1. D.P. Shoemaker and C.W.Garland, Experiments in Physical Chemistry, McGraw Hill, 1962.
- 2. Findlay's Practical Physical Chemistry, Longman, 1954
- 3. An Introduction to Electrochemistry, S. Glasstone, an East West Edition.

Mapping with Programme Outcomes: (S-Strong, M-Medium, L-Low)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	М	S	М	М	S	S	L	М	S
CO 2	М	М	М	М	S	М	М	S	М	L
CO 3	S	S	S	L	М	L	S	S	L	М
CO 4	М	S	S	S	М	S	L	М	S	М
CO 5	М	S	М	S	М	L	М	S	М	S

Co	urse code	UOMS115	SOFT SKILL	Credit - 2					
Со	re/Elective/	Supportive	Laboratory Safety Skills						
Pro	e-requisite		Students should have an idea about science laborat	ories					
Co	urse Object	ives:							
		tives of this course	are to:						
•	 To train the student how to work safely in the lab and protect others 								
•			a chemistry laboratory						
•		-	universal precautions for disposal and handling of ha	azardous chemicals					
Ex		rse Outcomes:							
	_		e course, student will be able to:						
1.	To work	in a lab safely and j	prevent human accidents	K1-K4					
2.	To practi	ce best lab practice	S	K2-K4					
3.	Student s	should know how to	o design a safe chemistry lab	K3-K4					
4.	Knowled	ge of Material Safe	ty Data Sheet (MSDS) and handling of harmful chem	nicals K2-K5					
5.	Setting u	p and handling clea	n room facilities	K5& K6					
	K1 - Remen	nber; K2 - Understa	and; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - 6	Create					
Un	it:1	Lab safety		10 hours					
Ch	emistry lab	layout and safety p	procedures practiced in the Chemical laboratory that	t pertain to general					
lab	oratory safet	y and awareness in	cluding eye shower to fume hoods.						
Saf	fety kits, dev	ices, uses and stora	ge. SOP for personal safety.						
Un	it:2	Universal preca	utions	10 hours					
Ma	terial Safety	Data Sheet (MSDS	S), chemical, radiation, fire, electrical and gas safety;	Clean room facility					
		-	portance in the handling of hazardous chemicals in	n the lab; handling					
rad	lioactive mat	erials and biohazar		1					
-		Contemporary I		10 hours					
	•		s, Animations, NPTEL, MOOC videos, online semi-	nars – webinars for					
stre		he subject matters.	0.1142	30 hours					
Tov									
1	Text Book(s) 1 Laboratory Safety Theory and Practice 1st Edition Anthony Fuscaldo December 1980								
2									
Re	ference Boo	ks							
1			ratory: handling and management of chemical hazard	ls, updated version.					
	National Academies Press, 25-Mar-2011 - Science - 360 pages								

ſ	2	Guidelines for Chemical Laboratory Safety in Academic Institutions American Chemical
		Society Washington, DC 2016.
ſ	3	Guidelines for Laboratory Design: Health, Safety, and Environmental Considerations, Fourth
		Edition Louis 15 March 2013 John Wiley & Sons, Inc.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1.	https://youtu.be/grUja_ILrOI - Material safety Data Sheet

- 2. <u>https://youtu.be/FD2hXZjgcEM- Problems</u> related to safety and loss statistics
- 3. https://youtu.be/8queMM7VVfw- Chemical Hazards / Lab Safety
- 3. <u>https://youtu.be/GjAD83B4JaY-PPE</u> and Lab Safety
- 4. <u>https://youtu.be/ICz1GUQoiAQ-Fire Extinguishers</u>

Course Designed By: Dr. Deepa P Nambiar and Dr. K. Venkatachalam

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	L	М	S	S	S	М	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	М	S	S	М	S	S
CO4	S	S	S	S	М	S	S	S	S	S
CO5	М	S	М	S	L	М	S	М	S	S

*S-Strong; M-Medium; L-Low

		ELECTRONICS, COMPUTERS AND C	OMPUTER				
Course code	CHE E001	PROGRAMING FOR CHEMISTS					
Core/Elective/	Supportive	Elective Cree	dit-3				
Pre-requisite		Student must have an awareness about compute	rs and				
		electronics					
Course Obj	ectives:						
The main ob	jectives of this cou	rse are to:					
To unde	erstand the working	of electronic components used in instruments					
To outli	ne the organization	and working of a computer					
To state	the development a	nd requirements of programing languages					
• To intro	duce modern conce	epts in computer science					
To critic	cally access the app	lication of computer programming languages in chem	nistry applications.				
Expected C	ourse Outcomes:						
On the succe	essful completion o	f the course, student will be able to:					
1. Student assistance	-	omputer and install hardware and software without	any K1-K4				
2. They will	l be able to identify	the electronic parts and accordingly maintain them	K2-K4				
3. Possess v	working knowledge	of how to develop computer programs					
	l be able to choos chemistry application	e the required programming language to write a progon.	gram K2-K5				
5. They will	l be able to develop	new programs for their chemistry requirements.	K3-K4				
		developed for chemistry applications	K5 & K6				
K1 - Remen	nber; K2 - Understa	and; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - C	Create				
	-						
Unit:1	CHEMISTRY	RONICS AND COMPUTERS IN	15 hours				
		capacitors, transistors, operational amplifiers, i					
-	erentiators, rectifie	rs and battery eliminators, signal to noise ratio, optim	ization and limit of				
detection.	ahomistry Dasis	structure of a computer input (output devices m	amount and stands				
-	-	structure of a computer – input / output devices, m peripherals, computer codes and arithmetic, binary	• • •				
-		ing point arithmetic, computational errors.	number systems –				
Unit:2	COMPUTER P		15 hours				
Computer Pro		les and techniques of programming, High and low	w level languages,				
operating system	ms, algorithms esse	entials of BASIC. C, C++, Java, Visual Basic, Fortran,	, Pascal,				
SQL							
Unit:3		S FOR CHEMIST	15 hours				
· ·	•	ing, Artificial Intelligence					
-	-	ulations – monobasic and polybasic acid systems, b	-				
-	• •	entiometry, equilibrium constants, solubility products	, standard deviation,				
r and t tests, reg	Contemporary Is	alf-wave potential calculations.	15 hours				
·	YouTubes Videos e subject matters.	s, Animations, NPTEL, MOOC videos, online semi	nars – webinars for				
suchgulening th	Total Lecture ho	urs	45 hours				

Tex	xt Book(s)
1	Principles of Instrumental Analysis – Skoog and Leary, IV Edition, Saunders College Publishing, 1992.
2	Text book of Quantitative Inorganic Analysis – A.I. Vogel, ELBS, III Edition, 1976, and IV Edition, 1985
3	Electronic Principle – A.P. Malvino, PMH Publishers, III Edition, 1984.
4.	BASIC Programming for Chemists – Peter C. Jurs, T.L. Isenhour and C.L. Wilkins, John Wiley and Sons, 1987
5.	Vogel's Text Book of Quantitative Chemical Analysis – A.I. Vogel, Pearson Education Ltd, VI Edition, 2001.
Ref	ference Books
1	Instrumental Methods of Analysis – Willard, Merit, Dean and Settle, CBS Publ.& Distributors, VI Edition, 1986
2	BASIC Programming – B.J. Holmes, Galgotia Book source Pub., 1983.
3	Programming for BASIC – M. Subramanian, A.H. Wheeler and Co. Pvt, Ltd., II Edition, 1987.
4	Programming and Computing with Fortran IV - K. P. Sharma, Affiliated East-West Press, Pvt. Ltd., 1976
5	Principles of Instrumental Analysis – Skoog, Holler & Nieman, Saunders College Publishing, V Edition, 2000
Rel	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	An Introduction to Programming through C++ <u>https://youtu.be/efXI8anQwXo</u>
2.	An Introduction to Artificial intelligence https://youtu.be/GHpchgLoDvI
3.	https://youtu.be/woVJ4N5nl s-Phyton Basics
3.	https://youtu.be/JMUxmLyrhSk-Artificial Intelligence
Cou	urse Designed By: Dr. T.M. Sridhar

Mapping	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	М	L	S	L	М	S	S	L	L
CO2	М	М	М	L	L	L	М	М	L	М
CO3	S	S	S	М	М	S	S	S	М	М
CO4	М	М	S	S	S	S	L	М	М	S
CO5	S	L	S	S	S	L	S	S	S	S

*S-Strong; M-Medium; L-Low

Semester-I	CHE E101	INORGANIC REACTION MECHANISM	
Core/Elective /Supportive	Elective	Credit-3	
Pre-requisite	complexes,	ould aware about basic knowledge of formation of m bonding and geometries and stabilities. Student should als emical bonding including metal d formation.	C
Course Objecti	ves:		
The main object	ives of this course	e are to:	
• Describe the	e efforts of inorga	nic and organometallic chemists to apply old principles and o	develop new
ones in an ir	ncredible set of co	ntexts	
• Illustrates h	ow ligands influer	nce the stability, structural and reactivity properties of central i	metal atoms
• Describe va	rious reaction path	hways for mechanism of formation of various geometrics of	metal ligand
complexes			
• Give knowle	edge on the theory	of electron transfer process from simple molecules to comple	ex molecules
• Understand	various theory o	on the stability of organometallic compounds and their rea	activity with
	and electrophilic		Ĵ
_	ourse Outcomes (
On the successful	al completion of th	he course, student will be able to:	
	d inertness in the	mportant futures of oxidation of metals complexes and its aspect of kinetics and thermodynamic of the coordination	K1-K2
2 Understan to study t	d the formation of	f metal complexes bonding and to able on mechanism involved in inorganic complex along with	K2-K5
3 Gain mor complexes	re knowledge on s and under	the electron transfer/redox reactions in various metal rstand the Marcus-Hush theory, to become ions of photochemical reaction of coordination compounds	K3-K5
		ew ligands and predict the binding affinity to its target	K2-K4
	n of different	ent types of application in metal complexes and its reaction metal complex concerned reactions in organometallic	K3-K6
K1 - Rem Create	ember; K2 - Und	lerstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 –	

UNIT:1 INERT AND LABILE METAL CHEMISTRY

Reactivity of metal complexes – Inert and labile complexes – Explanation of lability on the basis of valence bond and crystal field theories – Metal ion catalysed reactions and reaction mechanism, induced reactions and their characteristics, applications – kinetics and mechanism of induced reaction in metal complexes, – Stabilization of unusual oxidation states in solution – Survey of oxidation states with various electronic configuration of transition metals and inner-transition metals

UNIT:2 SUBSTITUTION REACTIONS IN COORDINATION COMPLEXES 15 hours

Reaction pathways – mechanisms of substitutions in octahedral complexes – Dissociative (D), Associative (A), and Interchange (I) mechanisms – Aquation (acid hydrolysis) – Acid catalyzed aquation reactions, Anation reactions. Base hydrolysis, CB mechanism in octahedral complexes – Substitution reactions in square planar complexes, trans effect, theories and applications – Isomerisation and racemisation reactions of coordination complexes; Electron transfer reactions or redox reactions – two electron transfer reactions, Inner sphere and outer sphere processes, electron exchange reactions, complementary reactions and non complementary reactions, Marcus-Hush theory and photochemical reactions

UNIT:3 BASIC CONCEPTS OF ORGANOMETALLIC COMPOUNDS AND 15 hours REACTION MECHANISM 15 hours

Definition of Electron counting–Types of ligands and their classifications in organometallic compounds, Hapto-nomenclature -16 and 18 electron rule and its limitations – Metal carbonyls – Metal π -cyclic compounds; Oxidative addition, reductive elimination, insertion migration and rearrangement –salient features and evidences, ligand protonation, electrophilic and nucleophilic attack on ligands – C-H activation -ortho metalation and cyclometalation, Fluxional behaviour of metal complexes

	Contemporary Learning	15 hours				
Exp	ert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, online					
sem	inars – webinars for strengthening the subject matters. Assignment and class room					
sem	inar					
Total Lecture hours						
	Text Book(s)					
1.	Huheey, J.E Inorganic Chemistry, 4th Edition, Harper and Row					
2.	Basolo, F. and Pearson, R.G Mechanism of Eastern Inorganic Reactions, Wiley					
3	3. Purcell, K.F. and Kotz, J.C Inorganic Chemistry, Saunders					
5.						

5th Edition, 2010

 J. D. Lee, Concise Inorganic Chemistry, Oxford University Press, 5th Edition, 2014

6. F.A. Cotton and G. Wilkinson Advanced inorganic Chemistry, John Wiley & Sons, 6th Edition, 1999

	Reference Books
1.	Nyholm, R.S. and Tobe M.L., - The stabilisation of oxidation state of the Transition metals, Advances in
	Inorganic and Radiation Chemistry, Volume 5 (1963)
2.	(a) J. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis,
	University: Science Books, Sausalito, CA, 2010
3.	G. L. Miessler, P. J. Fischer, D. A. Tarr, Inorganic Chemistry, 5th edn,
	Pearson, Upper Saddle River, NJ, 2014
4.	R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, Vol. 4, John Wiley & Sons,
	Inc., Hoboken, NJ, 2005
	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	https://www.youtube.com/watch?v=ez40OIQrP60
2.	https://www.dalalinstitute.com/wp-content/uploads/Books/A-Textbook-of-
	Inorganic-Chemistry-Volume-1/ATOICV1-3-1-Inert-and-Labile-Complexes.pdf
3.	https://link.springer.com/chapter/10.1007%2F978-1-4419-9276-5_6
4.	https://www.schoollearningresources.com/PDF/_Lectures%208-10(1).pdf

Mappin	g with Pr	ogramm	e Outcon	nes*						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	М	S	М	S	L	М	L	М
CO2	S	S	L	S	S	М	L	М	L	L
CO3	S	М	S	М	L	М	L	S	М	L
CO4	S	S	L	S	S	S	М	S	L	S
CO5	S	S	S	М	М	L	S	L	L	L

*S-Strong; M-Medium; L-Low

Course	Elective (I)						
Course Code	CHE E201						
Title of the Course	NAME REACTIONS IN ORGANIC CHEMISTRY						
Credits	3						
Pre-requisites, if any	Students must have known about the basic organic name reactions.						
Course	• To understand new carbon-carbon formation by name reactions						
Objectives	• To understand the heterocycle synthesis through name reactions						
	• To study the significances of name reaction in organic synthesis						
	• Importance of substitution reaction and their synthetic utilities						
Course	On the successful completion of the course, students will acquire knowl	edge of:					
Outcomes							
CO 1	Design and syntheses of organic molecules based on name reaction (K2	- K5)					
CO 2	Understand the mechanism involved in organic name reactions (K1-K4))					
CO 3	Understand key intermediates involved in organic name reactions (K1- K4)						
CO 4	Understand functional group transformations and reactivity in organic	name reactions					
	(K2-K4)						
CO 5	Explore synthetic utility of name reactions in organic synthesis (K3-K5)					
K1 -R	emember; K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Cro	eate					
	Unit I	15 hours					
Carbon-Carbon b	ond formation reactions-Perkin, Knovenagel, Wittig, Wittig-Horner, V	ilsmeier Haack,					
McMurray, Glace	r, Mannich, Pschorr, Simmons-Smith and Thorpe reactions.						
	Unit II	15 hours					
Heterocycle form	ing reactions-Paal-Knorr synthesis of pyrroles; Hantsch synthesis of pyrid	ines, Madelung,					
Reissert and Bisc	chler synthesis of indole; Skraup, Friedländer , Doebner-Miller and K	onard-Limpatch					
synthesis of quinc	line. Pomerantz-Fritsch synthesis of isoquinoline.						
	Unit III	15 hours					
Name reactions	on substitution and substituents-Chichibabin reaction, Eschweiler	Clark reaction,					
Polonowski reacti	on, Reissert reaction, Sommlett reactions, Mitsunobu reaction, Leukart reaction,	action, Bucherer					
reaction, Willeger	odt reaction and Willegerodt-Kindler reaction.						
	Contemporary Learning	15 hours					
Expert lectures, Y	YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars	- webinars for					
strengthening the	subject matters. Assignment and class room seminar						
	Total Lecture hours	45 hours					

Reading List	https://nptel.ac.in/courses/104/103/104103110/	
(Print and	https://nptel.ac.in/courses/104/105/104105034/	
Online)	https://nptel.ac.in/courses/104/101/104101115/	
Recommended	March, J. (2007); Advanced Organic Chemistry, 6th Edition, Wiley	
Text/Reference	Carey, F. Sundberg R. J. Advanced Organic Chemistry-Part A and B- 5th Edition	n,
Books	Springer	
	Clayden, J, Greeves, N, Warren, S. (2012); Organic Chemistry, 2 nd Edition, Oxford	l

Mapping with Programme Outcomes*

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	М	М	S	М	М	М	М	L	L
CO2	L	L	М	S	М	М	М	М	М	L
CO3	М	М	М	S	М	М	S	L	L	М
CO4	L	М	L	М	М	L	М	М	L	L
CO5	М	М	М	М	М	L	М	L	L	L

*S-Strong M-Medium L-Low

Core/	Course	Title of the Course	Credits
Elective/	Code		
Supportive	0000		
Elective	CHE E301	ESSENTIALS OF STATISTICAL	3
		THERMODYNAMICS	-
Course Obje	ctives:		
Ŭ	objectives of this	s course are,	
	U U	atistical thermodynamics in terms of concept of distribution,	probability.
-	and microstates		F,
• To learn t	he concepts of r	partition functions and its applications to calculate thermodynami	c properties.
		ts of statistics and apply to electrons in metal to helium.	- properties:
•		nental knowledge in statistical thermodynamics with different	ent areas of
		problems in basic sciences.	cint areas or
-		to some independent research problems and use some experimer	tal racourcas
	of the course.	to some independent research problems and use some experimen	ital lesources
Pre-requisite			
-		e UG level fundamental aspects on thermodynamics a	nd statistical
		roblems solving.	na statistica
		Totolins solving.	
After com	pletion of this co	ourse successfully, the students will be able to,	
		inciples of statistical thermodynamics. (K1)	
		ortance of statistical thermodynamics in chemical reaction dynamics	mics (K 2)
		e of statistical thermodynamics to different areas of chemistry. (
			,
	•	te research problems in statistical thermodynamics. (K4 and K5)	
	•	s to expand the dimensions of in statistical thermodynamics. ($\mathbf{K6}$	
	ember; K 2 - Und	lerstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create	
UNITS			
		al Thermodynamics	(9 Hours)
	-	cs and Kinetic theory of gases. Phase space. Ensemble. Liou	
		icrocanonical ensemble. Quantization of phase space. Classical	limit. Various
	using Microcano		
	robability Facto		(9 Hours)
-		nodynamic probability and most probable distribution.	
		canonical, micro canonical ensembles.	(0.11 \
UNII - III: I	Partition Functi	ONS	(9 Hours)

properties ΔS , ΔS , ΔG , ΔU , ΔH , Cv, in terms of partition functions.

UNIT	- IV: Types of Statistics (9 Hours)
Equili	brium constants and rare constants in terms of partition functions: Fermi-Dirac (FD), Maxwe
Boltzr	nann. Bose-Einstein (BE) statistics: Application to electrons in metals (FD), and to helium (BE).
UNIT	- V: Fluctuations (9 Hours)
Mean	square deviation and fluctuation in ensembles. Concentration fluctuation in quantum statistics. Not
equilit	prium States-Boltzmann transport equation. Particle diffusion. Electrical conductivity
Conte	mporary Learning 15 hours
Exper	t lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars - webinars for
streng	thening the subject matters. Assignment and class room seminar
	Total Lecture hours45 hours
Re	ference books:
1.	Thermodynamics - J. Rajaraman, SC Kuriakose, SLN Chand, 1986.
2.	Physical chemistry - PW Atkins, Oxford, 5th ed., 1995.
3.	B.K. Agarwal and M. Eisner, Statistical Mechanics, (1988) Wiley Eastern, New Delhi.
4.	D.A. McQuarrie, Statistical mechanics, (1976) Harper and Row Publishers, New York.
Re	lated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	https://www.youtube.com/watch?v=4RX_lpoGRBg&list=PLUl4u3cNGP60gl3fdUTKRrt
	5t_GPx2sRg
2.	https://www.youtube.com/watch?v=w_I0AkvbWFc&list=PLUl4u3cNGP60gl3fdUTKRrt
	5t_GPx2sRg&index=5
3.	https://www.youtube.com/watch?v=BwIUE1C6Iwk
4.	https://www.youtube.com/watch?v=XIXQ38JnF0k
5.	https://www.youtube.com/watch?v=LIbjB2Tef8A
_	

6. https://www.youtube.com/watch?v=KBe1d8BdjqQ

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	М	S	S	S	М	S	М	М	М	S
CO 2	S	М	S	М	S	М	М	М	L	М
CO 3	М	S	L	L	М	S	L	S	М	М
CO 4	М	S	М	S	S	М	S	М	S	М
CO 5	S	М	L	М	М	S	М	L	М	S

Mapping with Programme Outcomes: (S-Strong, M-Medium, L-Low)

SEMESTER II

_	se	CHE C002	ANALYTICAL INSTRUMENTATION C	redits – 3
code				
Core	/Elective/	Supportive	Core	
Pre-r	requisite		Student is required to have acquaintance with spectrosco	pic and
			chromatographic analysis	
Co	ourse Obj	ectives:		
Tł	ne main ob	jectives of this co	urse are to:	
•	To introd	uce the students to	basic electronics in instrumentation	
٠	Introduce	EMR and study t	he principle of Electronic and Molecular absorption in molec	cules
•	Estimatio	on of molecular spe	ecies using spectrophotometers	
٠	To under	stand the principle	e of absorption and emission using flame	
٠	Selection	of the chromatog	raphic technique to separate and identify molecules and ions	
•	Demonst	rate the role of mo	dern instrumentation in chromatography	
•			ssess the organization and functioning of spectroscopic instr	uments
•		•	s and conceptualize different hypotheses for qualitative and	
			bunds using m odern instrumentation.	1
	•	-	6	
Expe		rse Outcomes:		
		rse Outcomes:	he course, student will be able to:	
	ne successi	ful completion of t	he course, student will be able to: ne electromagnetic spectra	K1-K4
On th	ne successf The stude	ful completion of t ent can interpret th		K1-K4 K2-K4
On th	ne successi The stude Understa	ful completion of t ent can interpret th nd the electronics	ne electromagnetic spectra	
On th 1. 2.	ne successf The stude Understa Principle	ful completion of t ent can interpret th nd the electronics of absorption / en	ne electromagnetic spectra and block diagram of spectroscopic instruments.	
On th 1. 2. 3.	ne successi The stude Understa Principle Separatio	Ful completion of t ent can interpret th nd the electronics of absorption / en on and identificatio	ne electromagnetic spectra and block diagram of spectroscopic instruments. nission and their molecular interaction with light and flame.	K2-K4
On th 1. 2. 3. 4.	ne successi The stude Understa Principle Separatic Construc	Ful completion of t ent can interpret the nd the electronics of absorption / en on and identification tion and operation	ne electromagnetic spectra and block diagram of spectroscopic instruments. nission and their molecular interaction with light and flame. on of molecules and ions using chromatography.	K2-K4 K2-K5 K3-K4
On th 1. 2. 3. 4. 5.	ne successi The stude Understa Principle Separatic Construc	Ful completion of t ent can interpret the nd the electronics of absorption / en on and identification tion and operation n and interpreta	and block diagram of spectroscopic instruments. nission and their molecular interaction with light and flame. on of molecules and ions using chromatography. of modern chromatographic equipment's	K2-K4 K2-K5 K3-K4
On th 1. 2. 3. 4. 5. 6.	ne successi The stude Understa Principle Separatic Construc Collectio Instrume	Ful completion of t ent can interpret the nd the electronics of absorption / en on and identification tion and operation n and interpretants	and block diagram of spectroscopic instruments. nission and their molecular interaction with light and flame. on of molecules and ions using chromatography. of modern chromatographic equipment's	K2-K4 K2-K5 K3-K4 K5 & K6
On th 1. 2. 3. 4. 5. 6.	ne successi The stude Understa Principle Separatic Construc Collectio Instrume	Ful completion of t ent can interpret the nd the electronics of absorption / en on and identification tion and operation n and interpretants	ne electromagnetic spectra and block diagram of spectroscopic instruments. nission and their molecular interaction with light and flame. on of molecules and ions using chromatography. of modern chromatographic equipment's tion of data from spectroscopic and chromatographic	K2-K4 K2-K5 K3-K4 K5 & K6

Basic Electronics - Resistors, capacitors, transistors, operational amplifiers, integrated circuits, semiconductor devices.

Beer-Lambert's law, Filter photometry, Types of electronic excitation. Chromophore and Auxochrome-Bathochromic and Hypsochromic shift, UV-visible Spectrophotometry – Photometric titrations, Reaction rates, Complex studies.

Fluorimetry – Principles of fluorescence, Instrumentation and Applications. Turbidimetry and Nephelometry – Theory, Instrumentation and Applications

Un	it:2	Emission Techniques	15 hours
Fla	me Photome	try – Theory, Instrumentation and a few important applications.	
Em	ission Tech	niques - Theory, techniques of excitation, electrodes and their shapes,	flame and plasma
em	ission spectr	ometry – instrumentation and application.	
Ato	omic Absorj	ption Spectrometry - Theory, instrumentation (flame and flameless	atomization) and
app	lications.		
Тур	pes of interfa	ces, background correction and applications	
Un	it:3	Chromatography	15 hours
Cla	ssical form	s of chromatography - Introduction, principle and applications of c	olumn, thin layer
chr	omatography	y and paper chromatography.	
Mo	dern chroma	tographic techniques – Principle and applications of flash vacuum column	n chromatography,
Gas	s chromatogi	aphy and High performance liquid chromatography.	
Co	ntemporary	learning (15 hours)	
Exp	pert lectures	, YouTube Videos, Animations, NPTEL, MOOC videos, online semina	rs – webinars for
stre	engthening th	ne subject matters.	
		Total Lecture hours	45 hours
Te	xt Book(s)		
1	Principles	of Instrumental Analysis – Douglas A. Skoog, Saunders College Publ. III	Edition,
	1985.		
2	Text Book	t of Quantitative Inorganic Analysis – A.I. Vogel, ELBS, III Edition, 197	6, and IV Edition,
	1985.		
3	Vogel's To	ext Book of Quantitative Chemical Analysis – A.I. Vogel, Pearson Education	ion Ltd, VI
	Edition, 20	001	
4.	Principles	of Instrumental Analysis – Skoog and Leary, Saunders College Publ. IV E	dition, 1992.
5.	Analytical	Chemistry – Gary D. Christian, Wiley, New York, V Edition, 2001.	
6	Handbook	of Instrumental Techniques for Analytical chemistry – F. Settle, Prentice	Hall inc, 1997
Re	ference Boo	ks	
1	Instrument	al Methods of Analysis - Willard, Merit, Dean and Settle, CBS Publ.	& Distributors, VI
	Edition, 19	986.	
2	Instrument	al Analysis - Gary D. Christian & James, E. O'Reilly, Allyn & Baco	n Inc, II Edition,
	1986.		
3	Analytical	Chemistry – J.G. Dick, McGraw Hill Publishers, 1975	
4	Instrument	al Methods of Chemical Analysis – G.W. Ewing, McGraw Hill Publishers	s, 1975.
5	Quantitativ	ve Chemical Analysis – D.C. Harris, W.H. Freeman Publication, IV Editio	n, 1995.
Re	lated Online	e Contents MOOC, SWAYAM, NPTEL, Websites etc.	
1.	https://you	tu.be/9KkcioAoO-Y- Gas chromatography	
••			

3.	https://youtu.be/5wR9H1FryLs-Fluoroscence Spectroscopy
4.	https://youtu.be/Yzan11nP6Ls-Atomic Absorption Spectroscopy
5.	https://youtu.be/SnbXQTTHGs4-Chromatographic Techniques
6.	https://youtu.be/1F6CxVF5I9g-Flame Photometer
Co	urse Designed By: Dr. K. Ravichandran, Dr. Deepa P Nambiar and Dr. K. Venkatachalam

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	S	S	S	S	М	S	S
CO2	S	S	S	S	М	S	М	М	М	L
CO3	S	S	S	S	L	S	S	S	S	S
CO4	S	М	S	S	L	S	S	L	S	М
CO5	S	S	S	М	S	S	S	S	S	М

Seme	ster -II	CHE C102	MAIN GROUP ELEMENTS AND POLYMERS	INORGANIC	Credits – 3
	Elective portive	Core			
Pre-re	equisite	Students show structures and	ld have basic knowledge about unit cell, lattice p polymers	oints, radius ratio	, basic solid
Co	ourse Obj				
	-	pjectives of this	course are to:		
		•	l overview of fundamental properties of solids		
			of having defects in solids		
•		-	ptical and magnetic properties of ionic solids		
•			d free electron theories		
•		•	superconductor and magnetic properties of vario	ous compounds	
•	-		synthesis, structural features and applications of	-	nes, isopoly
	-		ransition metals	,	
•	Make stu	idents to acqu	re the methods of preparation, nature of bondir	ig, properties, apr	olications of
		•	ospohorus nitrogen compounds		
•	-		perties, reactivity and application of various bora	ane compounds	
Expect	ted Cour	se Outcomes (CO):		
On the	successfu	al completion of	f the course, student will be able to:		
			s related to lattice energy calculation and anal	vze the structures	K1-K4
		•	crystals. Students are expected to explain the ur	•	
	-	to various typ			
			ies such as electrical, magnetic and optical asp	ects of solids and	K4-K6
	• •	• • •	etors and semiconductors		
3 (Compare	the trends in th	synthesis and properties of main group		K2-K5
e	elements a	and discuss the	chemistry of Si, S, N and P based inorganic poly	mers	
4 U	Understan	d the chemistr	and applications of boranes, carboranes and met	talloboranes	K2-K3
5 I	Elucidate	various metho	s of synthesis, properties applications of poly	metallate anions,	, K3-K6
i	sopoly an	d heteropoly a	ids of transition metal ions		
I	K1 - Rem	ember; K2 - U	derstand; K3 - Apply; K4 - Analyze; K5 - Evalua	ate; K6 –Create	

UNIT	:1 STRUCTURE OF SOLIDS	15 hours							
Basics of	structure of ionic solids – Dissolution of Ionic Solids – Derivation of Born-La	ande and Born-							
Mayer ed	uations-Kapustinski's modification - entropy of solution and its significance, l	attice energy –							
Structure	Structure of rutile, fluorite antifluorite, zinc blende, wurttzite, cadmium iodide and nickel arsenide,								
spinels ar	nd inverse spinels - defects in solids, non-stoichiometric compounds.								
Electrical	, magnetic and optical properties of solids - free electrons and band theory - se	miconductors –							
supercon	ductors - Ionic conductivity in solids - Solid electrolytes - types of magnetic beha	viour, dia, para,							
ferro, ant	ferro and ferrimagnetism; Hysterisis – solid state lasers – inorganic phosphors – fer	rrites – garnets							
UNIT:2	Si, S, N AND P BASED INORGANIC POLYMERS	15 hours							
Chemistr	y of silicon – classification and structure of silicates and silicones – Synthesis, stru	cture, reactivity							
and appli	cation of polysilanes - Preparation, structure, properties, reactivity and applicat	ions of sulphur							
nitrogen o	compounds- Phosphorus nitrogen compounds								
UNIT:3	HIGHER BORANES AND POLYOXOMETALATES	15 hours							
Chamistr	a sharen and its isotoons, nortoon Conture Thereau. Dressention and structure	af hanana an d							
	y of boron and its isotopes, neutron Capture Therapy – Preparation and structure								
-	branes – STYX numbers – Wade's and Wade's - Mingo's rule – Preparation, structure of a set of the second se								
	tivity of carboranes, metalloborane and metallocarboranes – Isopoly acids	or vanadium,							
	n, Molybdenum and Tungsten – Heteropoly acids								
-	borary Learning 15 hours								
-	ctures, YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars	– webinars for							
strengthe	ning the subject matters. Assignment and class room seminar								
	Total Lecture hours	45 hours							
Text Boo									
1.	Cotton, F.A. and Wilkinson, L - Advanced Inorganic Chemistry 3rd and 4th	hEdition, John							
	Wiley								
2.	Earnshaw and Greenwood - Chemistry of Elements								
3.	Huheey, J.E., - Inorganic Chemistry, 2nd Edition, Harper and Row, 1976								
4.	Concise Inorganic Chemistry, J.D.Lee								
5.	Solid State Chemistry and applications- A.R. West (John Wiley and Sons)								
6.	Principles of the Solid State- H.V. Keer (Wiley Eastern Limited)								
Refer	ence Books								
1.	Hanney, N.D Solid State Chemistry, Prentice Hall, 1967								
2.	Greenwood, N.N Ionic Crystals, Lattice Defects and Non- Stoichiometry,								
	Butterworths, 1968								
3.	A.F. Wells - Structural Inorganic Chemistry								
Relate	ed Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]								
1.	https://nptel.ac.in/courses/104/104/104104101/								
2.	https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-cy16/								

3.	https://www.britannica.com/science/fluorocarbon-polymer
4.	http://homes.nano.aau.dk/fp/uke/pdf/chapter12.pdf
5.	https://www.dalalinstitute.com/books/a-textbook-of-inorganic- chemistry-
	volume-1/isopoly-and-heteropoly-acids-and-salts-of-mo-and-w-
	structures-of-isopoly-and-heteropoly-anions/
6.	https://www.britannica.com/science/coordination-compound/Isopoly- and- heteropoly-anions

Mappir	Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	S	S	М	L	М	S	М	М	М	М		
CO2	S	S	S	S	М	М	S	М	L	L		
CO3	М	М	S	М	S	М	L	L	М	S		
CO4	S	S	S	S	S	S	М	S	L	L		
CO5	М	S	L	L	М	L	S	L	М	М		

	Core						
Course Co	le CHE C203						
Title of th	e ORGANIC REACTION MECHANISM						
Course							
Credits	3						
Pre-requisit if any	es, Students should know about the fundaments of concept of chemical mechanism.	reaction and their					
Course	• To study the basic concepts addition and elimination reactions and	their mechanism.					
Objective	• To predict the selectivity and stereo-chemical outcome of a elimination reactions, oxidation and reduction reactions	ddition reactions,					
	• To understand the basic concepts of group or atom migration rearrangements along with mechanistic details	during molecular					
	Realize importance of oxidation and reduction reagents in organic	synthesis					
Course	On the successful completion of the course, student will be able to:						
Outcomes							
CO 1	Understand different aspects of addition reactions and elimination reac	Understand different aspects of addition reactions and elimination reactions (K2-K5)					
CO 2	Familiar with various types of molecular rearrangements and their med	chanisms (K1-K6)					
CO 3	Understand the concept of atom or group migration involve rearrangements (K2, K3, K4 and K5)	Understand the concept of atom or group migration involved in molecular rearrangements (K2, K3, K4 and K5)					
CO 4	Understand the significance and mechanism of various types oxidat reactions (K2, K4 and K5)	ion and reduction					
CO 5	Understand the selectivity and synthetic utility of addition, eliminati reduction reactions (K1-K5)	ion, oxidation and					
K1 Domomh	er; K2 -Understand; K3- Apply; K4 -Analyze; K5 -Evaluate; K6 -Create						
		1					
	DDITION AND ELIMINATION REACTIONS	15 hrs					
Electrophilic	addition to carbon-carbon double and triple bonds. Nucleophilic addition	to carbon-carbon					
multiple bon	ls. Generation and addition of carbenes-Michael addition and Robinson annul	ation.					
Nucleophilic	addition to -C=O bond- A study of Mannich, benzoin, Darzen's glycidic	ester, Stobbe and					
Knovenegal	condensation reactions- Wittig, Wittig-Horner olefination reaction- Julia &	& Peterson alkene					
synthesis. El	mination reactions: E1, E2, E1cb and Ei-elimination. Conformation of me	echanism; solvent,					
substrate, lea	ving group effects-Saytzeff's Vs Hoffman elimination; Chugaev and Cope elin	mination.					
	MOLECULAR REARRANGEMENTS AND NAME REACTIONS	15 hrs					
Unit - II							
	echanism of the following rearrangements: Beckmann, Curtius, Hoffmann,	Schmidt, Lossen,					
A study of n	echanism of the following rearrangements: Beckmann, Curtius, Hoffmann, ol, Wagner Meerwin, Demyanov, Dienone-Phenol, Favorski, Benzidine						
A study of n Wolff, Pinac	ol, Wagner Meerwin, Demyanov, Dienone-Phenol, Favorski, Benzidine						
A study of n Wolff, Pinac							

Unit - III	DXIDATION AND REDUCTION REACTIONS	15 hrs						
Oxidation with	h Cr and Mn reagents; Oxidation with LTD, DDQ and SeO2; Oxidation using	DMSO either with						
DCC or Ac2	D Hydroxylation of olefinic double bonds (OsO4, KMnO4); Woodward and	Prevost oxidation.						
Epoxidation	using peracids including Sharpless epoxidation, Ozonolysis. Reduction with	NaBH4, LiAlH4,						
Birch reducti	on. Hydrogenation (homogenous and heterogeneous), hydration of carbon-	carbon double and						
triple bonds.	Asymmetric reduction of carbonyl functions (Corey's procedure).							
Contempor	ary Learning 15 hours							
Expert lectur	es, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars	– webinars						
for strengthe	ning the subject matters.							
Ū.	and class room seminar							
U	Total Lecture hours	45 hours						
Reading L								
(Print an								
(1 Int an Online)	Organic Chemistry notes: https://nptel.ac.in/courses/104/101/104101005/							
Omme)	https://nptel.ac.in/courses/104/101/104101127/							
	YouTube: <u>https://onlinecourses.swayam2.ac.in/ugc19_ch01/preview</u>							
	YouTube: <u>https://onlinecourses.swayam2.ac.in/cec21_cy02/preview</u>	<u>/</u>						
Recommen		thesis, 3 rd Edition,						
Text/Refere								
Books	 Ahluwalia, V. K. (2012); Oxidation in Organic Synthesis, Ane Book Smith, M. B. (2015); March's Advanced Organic Chemistry: Reaction 							
	and Structure, 7 th Edition, John Wiley & Sons, Inc.	ons, weenamsms,						
	• Carruthers, W. & Coldham, I. (2015); Modern Methods of Orga	nic Synthesis, 4 th						
	Edition, Cambridge University press, UK.							
	• Stuart Warren, (2007); Organic Synthesis: The Disconnection Appr	roach, 2 nd Edition,						
	 Wiley. March, J (2006); Advanced Organic Chemistry, 4th Edition, Wiley. 							
		try- Part A and B						
	5 th Edition, Springer.	• Carey, F. A. & Sundberg, R. J. (2008); Advanced Organic Chemistry- Part A and B. 5 th Edition, Springer.						
	• <u>Clayden, J, Greeves, N, Warren, S & Wothers</u> , P (2000); Organic C	Chemistry, Oxford						
	University Press.							
	• House, H. O. (1998); Modern Organic Synthesis, 2nd Edition. W. A							
	• House, H. O. (1998); Modern Organic Synthesis, 2nd Edition. W. A	A. Benjamin. New						

Mapping with Programme Outcomes*

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	L	S	L	S	S	М	L	М	L
CO2	М	М	М	L	S	S	М	М	L	L
CO3	М	М	М	М	S	М	М	L	L	L
CO4	М	М	М	М	S	S	М	М	L	L
CO5	М	М	S	М	S	М	L	М	L	L

Core/	Course	Title of the Course	Credits
Elective/	Code		
Supportive			
Core	CHE C303	QUANTUM CHEMISTRY AND GROUP THEORY	3
Course Obje	ctives:		
The main obj	ectives of this co	purse are,	
-		tals of quantum chemistry in terms of Schrodinger equation, s onding in molecules.	imple harmonic
• To under transition		eory in terms point group of a molecule and its applicati	ons to spectra
• To learn molecules	· ·	of microwave, IR and Raman spectroscopy with applicati	on to different
		the fundamental knowledge of quantum chemistry, gro ent areas of chemistry.	up theory and
of the cou	urse.	do some independent calculations and use some theoretical con	cepts at the end
Pre-requisite			
		UG level fundamental aspects on quantum chemistry, gr	roup theoryan
Course Outc	along with probl	ems solving:	
		se successfully, the students will be able to,	
		antum chemistry, group theory and spectroscopy. (K1)	
	-	ationships of quantum chemistry, group theory and spectroscopy	r. (K2)
• CO3: Ap in chemis		ge of quantum chemistry, group theory and spectroscopy to dif	ferent problem
• CO4: An K5).	alyze and Evalu	nate problems of quantum chemistry, group theory and spectro	scopy. (K4 and
spectrosc	opy. (K6)	epts to expand the dimensions of quantum chemistry, gro	oup theory and
	ber; K2 - Unders	stand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create	
		· •	
-	antum Chemis	•	(10 Hours)
•		electric effect, Bohr's quantum theory, Wave Particle dual	•
	C C	a – linear and Hermitionan operators, Quantum mechani	•
-	-	solutions to the problem of a particle in one and three dime	
Quantum mec	chanical results f	for a simple harmonic oscillator and rigidrotator. Schrodinger e	equation for the
hydrogen ator	n and its solution	n, the origin of electronic quantum numbers and their physical s	ignificance.
UNIT - II: Q	uantum Chemis	stry-II	(8 Hours)

molecules. VSEPR theory – shapes and bonding in molecules of AB1, AB2, AB6, etc. type systems.

UNIT - III: Group Theory-I

Symmetry elements and symmetry operations, point groups, Reducible and irreducible representations, character tables, orthogonality theorem and its consequences, symmetry selection rules for IR Raman and electronic spectral transitions, Systematic procedure for determining symmetries of normal modes of vibration, symmetry applied to MO theory and orbital hybridization.

UNIT - IV: Group Theory-II

Direct product, Direct product representations, Importance of direct product, symmetry selection rules, Projection operators, LCAO approximation, Huckel theory, Symmetry factoring of secular equations, Simplification of Huckel's molecular orbitals, Group theory and Hybridization, HMO calculations.

UNIT - V: Rotational and Vibrational Spectroscopy

Rotational Spectroscopy: Rotational Spectra of diatomic and polyatomic molecules.

Vibrational Spectroscopy: Simple harmonic oscillator and an hormonic oscillator, calculation of force constants from spectra of diatomic molecules Vibration Rotation spectra- PQR branches, interaction of vibration and rotation. Polyatomic molecules, normal modes and normal coordinates. Symmetries of normal modes of vibration and bond assignment for H2O,

CO2, NH3, BC13, CC14, XeF4, CO stretching frequencies in metal carbonyls. Fundamentals, Overtones, combinations Fermi resonance, polarized Raman Spectra, Laser Raman spectra. Raman selection rule basic principles of Magnetic resonance.

Group frequencies – identification of functional groups, Applications in organic and inorganic chemistry.

Contemporary Learning 15 hours

Expert lectures, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters. Assignment and class room seminar

Total Lecture hours Reference Books: 1. Chemical Application of Group Theory, F.A.Cotton, Wiley, 1971.

- 2. Group Theory Application to Chemistry, K.V.Raman, TMH,1990.
- 3. Group Theory ,V.Ramakrishnan, Vishal.
- 4. Quantum chemistry, Eyrimg, Walter and Kimball.
- 5. Mathematics for physics and chemistry margenau and Murphy.
- 6. Introduction to ligand field theory, C.J.Balhauson and H.B.Gray.
- 7. Introduction to ligand field theory- B.N.Figgis.

Text Books:

- 1. Physical Chemistry, G. M. Barrow, 4 th Ed., McGraw Hill.
- 2. Physical Chemistry, P. W. Atkins, 4th Ed., Oxord.
- 3. Molecular quantum mechanics, P.W.Atkins, Oxford university press 1983.
- 4. Quantum mechanics in chemistry, M.W.Haung, W.A.Benjaamen.

(10 Hours)

45 hours

(8 Hours)

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1. https://www.youtube.com/watch?v=IHypiMpMy50
- 2. https://www.youtube.com/watch?v=hnWu3ey7ifk
- 3. https://www.youtube.com/watch?v=7jOSbtR8mTs&list=PLyqSpQzTE6M8eGML9tjCEgZjci 5USazoW

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	S	М	S	М	L	S	S	S	S
CO 2	М	М	S	S	М	S	М	L	L	М
CO 3	S	S	М	М	L	М	L	М	S	М
CO 4	S	М	S	М	S	S	L	S	S	L
CO 5	М	М	М	S	S	М	S	L	L	М

Mapping with Programme Outcomes: (S-Strong, M-Medium, L-Low)

~ ~ ~ ~	CHE C003	ANALYTICAL CHEMISTRY- PRACTICAL-I	Credits – 3
Core /Electiv	ve /Supportive	Core	
Pre-requisite	2	Students should know about analytical chemistry	
Course Obje	ctives:		
The main obj	ectives of this cou	irse are to:	
	-	vledge about the conductivity and potentiometric titrations, neph experimental methods.	nelometry and
• To motiv		to understand the basic principles of spectrophotometry a	nd carry out
-	-	instrumental analysis	
	-	ce of records, observations and data interpretation	
	Course Outcome	*	
On the suc	cessful completio	n of the course, student will be able to:	
1. To prepa	are for each experi	iment by studying lab handouts and links therein	K1-K4
2. To appre	eciate the modern	problems and scientific controversies in analytical chemistry	K2-K4
	ign and perform entation technique	a experiments to estimate the amount of species using s.	
		law and determine the unknown concentration	K2-K5
	date the theory ance through the p	of electrochemistry and the measurement of electrical practical seasons.	K3-K4
6. To unde		concepts of conductometric and potentiometric titrations and f unknown solutions using the corresponding instruments.	K5 & K
6. To under the quan	titative analysis o		K5 & K
6. To under the quan K1 - Remo	titative analysis o	f unknown solutions using the corresponding instruments.	K5 & K
6. To unde the quan K1 - Remo List of Ex Spectrophoto	titative analysis o ember; K2 - Unde periments metry:	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create	K5 & K
 6. To under the quantities of the quant	titative analysis o ember; K2 - Unde periments metry: ttion of Iron /Coba	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create	K5 & K
 6. To under the quantities of the quant	titative analysis o ember; K2 - Unde periments metry: tion of Iron /Coba tion of dissociatio	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create alt.	K5 & K
 6. To under the quant the quant with the quant of the quant o	titative analysis o ember; K2 - Unde periments metry: tion of Iron /Coba tion of dissociatio tion of Binary min	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create alt. on constant of an indicator. xtures.	K5 & K
 6. To under the quant the quant with the quant of the quant o	titative analysis o ember; K2 - Unde periments metry: ation of Iron /Coba ation of dissociation ation of Binary mini- ation of Mn in stee	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create alt. on constant of an indicator. xtures.	K5 & K
 6. To under the quant the quant the quant with the quant of t	titative analysis o ember; K2 - Unde periments metry: tion of Iron /Coba tion of dissociatio tion of Binary min tion of Mn in stee ography:	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create alt. on constant of an indicator. xtures. el.	K5 & K
 6. To under the quant the quant the quant with the quant of t	titative analysis o ember; K2 - Unde periments metry: ation of Iron /Coba ation of dissociation ation of Binary mini- ation of Binary mini- ation of Mn in stee ography: ation of efficiency	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create alt. on constant of an indicator. xtures. el. of a column.	K5 & K
 6. To under the quant the quant the quant with the quant of t	titative analysis o ember; K2 - Unde periments metry: tion of Iron /Coba tion of dissociatio tion of Binary min tion of Mn in stee ography: tion of efficiency tion of Rt values f	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create alt. on constant of an indicator. xtures. el. of a column. for various organic compounds.	K5 & K
 To under the quant the quant the quant with the quant of the quant of	titative analysis o ember; K2 - Unde periments metry: ation of Iron /Coba ation of Binary min ation of Binary min ation of Mn in stee ography: ation of efficiency ation of Rt values for a of mixtures - Hy	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create alt. on constant of an indicator. xtures. el. of a column.	K5 & K
 To under the quant the quant the quant with the quant of the quant of	titative analysis o ember; K2 - Unde periments metry: tion of Iron /Coba tion of dissociatio tion of Binary min tion of Mn in stee ography: tion of efficiency tion of Rt values f of mixtures - Hy- y/ pHmetry:	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create alt. on constant of an indicator. xtures. el. of a column. for various organic compounds. drocarbons, alcohols	K5 & K
 To under the quant the quant the quant with the quant of the quant of	titative analysis o ember; K2 - Unde periments metry: ation of Iron /Coba ation of Binary min ation of Binary min ation of Mn in stee ography: ation of efficiency ation of Rt values f of mixtures - Hy- y / pHmetry: ation of pKa of an	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create ult. on constant of an indicator. xtures. el. of a column. for various organic compounds. drocarbons, alcohols acid.	K5 & K
 To under the quant the quant the quant with the quant sector of the quant of the qu	titative analysis o ember; K2 - Unde periments metry: tion of Iron /Coba tion of dissociatio tion of Binary min tion of Binary min tion of Mn in stee ography: tion of efficiency tion of Rt values for n of mixtures - Hy- y/ pHmetry: tion of pKa of an tion of zinc with f	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create alt. on constant of an indicator. xtures. el. of a column. for various organic compounds. drocarbons, alcohols acid. ferrocyanide.	K5 & K
 To under the quant the quant the quant with the quant of the quant of	titative analysis o ember; K2 - Unde periments metry: ation of Iron /Coba ation of dissociation ation of Binary mix ation of Binary mix ation of Mn in stee ography: ation of efficiency ation of Rt values f of mixtures - Hy y / pHmetry: ation of pKa of an ation of zinc with f ation of ferrous ior	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create ult. on constant of an indicator. xtures. el. of a column. for various organic compounds. drocarbons, alcohols acid. ferrocyanide. n with dichromate.	K5 & K
 To under the quant the quant the quant with the quant of the quant of	titative analysis o ember; K2 - Unde periments metry: ation of Iron /Coba ation of dissociation ation of Binary mix ation of Binary mix ation of Mn in stee ography: ation of efficiency ation of Rt values f of mixtures - Hy y / pHmetry: ation of pKa of an ation of zinc with f ation of ferrous ior	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create alt. on constant of an indicator. xtures. el. of a column. for various organic compounds. drocarbons, alcohols acid. ferrocyanide.	K5 & K
 To under the quant the quant the quant with the quant sector of the quant of the qu	titative analysis o ember; K2 - Unde periments metry: ation of Iron /Coba ation of dissociation ation of Binary mix ation of Binary mix ation of Mn in stee ography: ation of efficiency ation of efficiency ation of Rt values for a of mixtures - Hy- y/ pHmetry: ation of pKa of an ation of zinc with for ation of ferrous ior ation of carbonate/ atry : Conductorme	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create ult. on constant of an indicator. xtures. el. of a column. for various organic compounds. drocarbons, alcohols acid. ferrocyanide. n with dichromate.	K5 & K
 To under the quant the quant the quant with the quant of the quant of	titative analysis o ember; K2 - Unde periments metry: ation of Iron /Coba ation of dissociation ation of Binary min ation of ation ation of ation ation ation of carbonate/ ation of sulphate.	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create ult. on constant of an indicator. xtures. el. of a column. for various organic compounds. drocarbons, alcohols acid. Ferrocyanide. n with dichromate. bicarbonate and mixtures. tric titrations Nephelometry:	K5 & K
 To under the quant the quant the quant with the quant of the quant of	titative analysis o ember; K2 - Unde periments metry: ation of Iron /Coba ation of dissociation ation of Binary mix ation of Binary mix ation of Mn in stee ography: ation of efficiency ation of efficiency ation of Rt values for a of mixtures - Hy- y/ pHmetry: ation of pKa of an ation of zinc with for ation of ferrous ior ation of carbonate/ atry : Conductorme	f unknown solutions using the corresponding instruments. rstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create ult. on constant of an indicator. xtures. el. of a column. for various organic compounds. drocarbons, alcohols acid. Ferrocyanide. n with dichromate. bicarbonate and mixtures. tric titrations Nephelometry:	K5 & K

	ntemporary Issues	
Yo	uTubes Videos, Animations, NPTEL, MOOC videos,	
	Total Practical hours	60 hours
Te	xt Book(s)	
Re	ference Books	
1	Instrumental Methods of Analysis - Willard, Merit, Dean and Settle, CBS Publ. & Di	stributors, V
	Edition, 1986.	
2	Text Book of Quantitative Inorganic Analysis – A. I. Vogel, ELBS, III and IV Edition	
3	Instrumental Analysis - Gary D. Christian & James, E. O'Reilly, Allyn & Bacon Inc, II E	dition, 1986
4	Principles of Instrumental Analysis D. A. Skoog, Saunders College Pub. Co., III Edition,	
	1985	
5	Instrumental Methods of Chemical Analysis – G.W. Ewing, McGraw Hill Publishers, 197	75.
	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://youtu.be/xHQM4BbR040-Spectrophotomettry	
2	https://youtu.be/anlIEj4xWhU-Potentiometry	
3	https://youtu.be/u9t4vBF0h9k-Conductometry	
	Course Designed By: Dr. K. Venkatachalam	

Mapping	Mapping with Programme Outcomes*													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1	М	L	S	М	S	L	S	М	L	S				
CO2	S	S	S	S	М	S	S	М	М	S				
CO3	S	S	S	L	L	S	S	S	S	S				
CO4	S	S	S	S	S	М	S	L	М	S				
CO5	S	S	S	S	М	L	S	М	S	S				

Semester ·	-II CHE C103	INORGANIC CHEMISTRY PRACTICAL – I	Credits – 3
Core/Elec			
/Supportiv			
Pre-requis		edge on inorganic salts and metal chelated complexes	
Course O	•	ractical course is able to:	
	v .	common and rare cations, respectively, present in the	riven mixture o
ino	rganic salts and reaction	ons behind it through semi micro qualitative analysis	given mixture o
	· ·	ematic qualitative analysis with strong theoretical backround	
	develop the skill f nplexometric titrations	for the estimation of various metal cations from the n s	nixtures throug
Expected	Course Outcomes (C	O):	
On the suc	cessful completion of	the course, student will be able to:	
1 The	students will develop	the key technical skill related to the quantitative determination	n K3-K4
	1	bugh complexometric titrations	
	*	d maintain high standards of professional and scientific	c K1-K3
	es in the laboratory		
3 Lear	n quick identification	of nature of any unknown metal ions	K1-K4
4 Dev	elop the skill to prepar	re various unknown solutions and	K2-K6
reag	ents for their respectiv	e experiments	
K1 - Reme	mber; K2 - Understan	ıd; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create	
(A) QUAN	NTITATIVE ANALY	/SIS	30 hours
Complexor water	metric titrations using	g EDTA - Estimation of zn, Ca, Ni, Mg and Hardness	and softness of
	(B) QUALITATIV	E ANALYSIS	30 hours
Semimicro	qualitative analysis o	f mixtures containing two common and rare cations.	
	ring are the rare cation , Se, Te, Ce, Th, Ti, Zi		
<i>Note:</i> Exa	mination to be conduc	e cations along with one common cations.	ive analysis of
		Total practical hours	60 hours
Text Book	x(s)		
Ū.	l's Textbook of Macro Vogel, G. Svehla, 19	o and Semimicro Qualitative Inorganic Analysis, Arthur Israel 79.	Vogel, Arthur
	Ramanugam, Inorg	anic semimicro qualitative analysis, 3rd edition, Natio	nal Publishing
	any, 1974.		
comp	any, 1974.	e Inorganic Analysis- A.I. Vogel 6thedition Longman	
comp3.A Tex	any, 1974.		

Mappin	Mapping with Programme Outcomes*												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	S	L	S	М	L	L	L	М	L	L			
CO2	L	L	L	М	L	L	М	S	S	S			
CO3	М	М	S	М	S	М	L	L	М	S			
CO4	S	М	S	L	L	L	S	L	М	L			

Course Code	UOMS-118
Title of the Course	SPECTROSCOPY INSTRUMENTATION
Course	Soft skill Credit - 2
Pre- requisites, if any	Basic knowledge on UV, IR, NMR and Mass Spectroscopy will be advantageous.
Course Objectives	 The main objectives of this course are to: To study the basic principles of molecular spectroscopy To study the instrumentation aspects of molecular spectroscopy To provide hands on training on various instruments such as UV, IR, NMR and Mass
	Spectroscopy Instrumentation.
Course Outcomes	On the successful completion of the course, students will acquire knowledge of:
CO 1	To carry out experiments individually and gain knowledge about principles and techniques involved in Spectroscopy (UV, IR, NMR and Mass) Instrumentations (K1-K3).
CO 2	Acquire skills in sampling techniques for spectral analysis (K2-K5)
CO 3	Acquire experimental skills and handling instruments (K2-K5)
K1-Remember;	K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Create
Unit- I	(10 hrs)
Principles – Ins spectroscopy. IR SPECTROS	SCOPY INSTRUMENTATION strumentation – hands on training-sample handling techniques - Application of UV-Visible SCOPY INSTRUMENTATION: nstrumentation – hands on training-sample handling techniques - Application of IR
Unit – II	(10 hrs)
	IMENTATION
	trumentation – advantages of NMR techniques – Application of NMR
Unit – III	(10 hrs)
MASS SPECT	ROMETRY
Basic Principles	s – Instrumentation – advantages of mass techniques – Application of mass spectrometry
Reading List (Print and Online)	 <u>https://nptel.ac.in/content/storage2/courses/102103044/pdf/mod2.pdf</u> <u>https://www2.chemistry.msu.edu/courses/cem351/FS16_HUANG/Lecture Presentation/Ch 10 Lecture Presentation.pdf</u> <u>https://www.slideshare.net/siraj174/sir-aj-nmr-spectroscopy-lecture</u> <u>http://web.iyte.edu.tr/~serifeyalcin/lectures/chem305/cn_1.pdf</u> <u>https://www.youtube.com/watch?v=qtpVfccYEHE&t=98s</u>

Recommended	• Silverstein, R. M, Webster, F. X, Kiemble, D. J, Bryce, D. L (2015); Spectrometric									
Text/Reference	Identification of Organic Compounds, 8 th Ed, Wiley									
Books	• Kalsi, P. S (2016); Spectroscopy of Organic Compounds, 7 th Ed, New Age International									
	• Pavia, L, Lapman, G. M, Kriz, S, Vyvyan, JR (2015); Introduction to Spectroscopy, Cengage Learning, ISBN 13: 978-81-315-2916-4									
	 Jag Mohan (2016); Organic Spectroscopy Principles & Applications, 3rd Ed, Narosa Publishing House. 									

Mapping with Programme Outcomes*

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	М	М	М	М	М	М	М	М	L
CO2	М	L	S	М	М	L	L	М	S	S
CO3	М	М	М	М	М	М	М	L	М	S

Cou	rse code		ADVANCED METHODS IN CHEMICAL ANALYS	SIS Credits – 2
Skill	enhancer	nent course /	Value added course	
Valu	ie added c	ourses		
Pre-	requisite		Students should know about chemical analysis to identify	fy the molecules
Cou	rse Object	ives:		
The	main objec	tives of this cou	rse are to:	
• A	bility to an	alyze organic m	olecules	
• K	nowledge	of procedures to	be used for different types of molecules	
• A	nalysis and	l Interpretation of	of spectrum	
• Id	lentificatio	n of molecules a	nd ions present in organic compounds.	
Expe	ected Cou	rse Outcomes:		
On tl	he successf	ful completion of	f the course, student will be able to:	
1.	Basic kn	owledge of meth	ods used in analysis of organic molecules	K1-K2
2.	To learn organic r	•	of Spectroscopic methods to analyze the chemical nature	re of K2-K4
3.	To summ	aries the data ar	nd find out the structure of organic molecules	K3-K4
4.	To under analysis	stand the princip	ble and assimilate the various steps involved in chemical	K3-K5
5.	To estim	ate and critically	assess properties of organic molecules	K4-K5
6.	To device	e a protocol to a	nalyze the organic molecules	K5 - K6
K1 -	Remembe	r; K2 - Understa	and; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Creat	te
Valu	ıed	Advanced me	ethods in	30 hours
adde	ed	chemical ana	lysis	
cour	se			
1.	Gas Chro	matography		
2.	Gas Chro	matography-Ma	ss Spectrum	
3.	High Per	formance liquid	chromatography	
4.	High Per	formance liquid	chromatography-Mass spectrum	
5.	Nuclear N	Magnetic resonat	nce spectroscopy	
6.	FT-IR Sp	ectroscopy		
7.	UV-Vis s	pectroscopy		

Cou	irse code	CHE E002	ANALYSIS OF COMPLEX MATERIALS		Credits – 3
Cor	e/Elective/	Supportive	ELECTIVE		
Pre	-requisite		Students should know about chemical analysis		
Cou	rse Object	ives:			
The	main objec	tives of this cou	rse are to:		
• A	Ability to ar	alyze ores and a	alloys		
• k	Knowledge	of procedures to	be used for different types of ores and alloys		
• A	Analysis of	organic compou	nds using chemical analysis		
• I	dentificatio	n of molecules a	and ions present in organic compounds.		
• (Classificatio	on and properties	s of fuels		
• A	Analysis of	fuels to determin	ne their properties		
Exp	ected Cou	rse Outcomes:			
Ont	he successi	ful completion o	f the course, student will be able to:		
1.	Basic kn	owledge of meth	nods used in analysis of complex materials		K1-K2
2.	Toidenti	fy the procedure	to analyze the chemical nature of Ore and alloy samples	s	K2-K4
3.	To summ	naries the chemic	cal reactions involved in analysis of materials		K3-K4
4.	To unde	rstand the princ	ciple and assimilate the various steps involved in ch	emical	K3-K5
	analysis				
5.	To estim	ate and critically	assess properties of complex materials		K4-K5
6.	To devic	e a protocol to a	analyze any ores, alloys, organic compounds and fuels	that is	K5 - K6
	provided	using classical a	analytical procedures		
K1 ·	- Remembe	r; K2 - Understa	and; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Cre	eate	
.					
Uni		Ore and Allo	• •	15 h	
	•	•	ample preparation – Decomposition and dissolution of	of the s	ample, Fusion
-			d alkaline fluxes.		0
	-	loys – Solder an	analysis of Ores and Alloys – Oxide Ore- Haematite, Ca	ardonate	e Ore
Uni		•	Organic Compounds	15 h	ours
		-	osition of organic compounds – Dry and wet ashing.		
			ogen and hydrogen in organic compounds.	1 451011	
	•		er in liquids and solids. Direct and indirect methods –	use of]	Karl- Fischer's
		and Stark method	-		
Ū			ine, phenolic – OH, alcoholic – OH, vicinal hydroxyl,	aldehy	de and ketonic
	-		oils and fats – Bromination and iodine number. Rancid		
Spee	ctrometry –	Theory, instrum	nentation (flame and flameless atomization) and application	tions.	

Unit:	S Fuel Analysis	15 hours
Fuel	Analysis - Solids, liquids and gas	eous fuels – Sampling procedure, ultimate and proximate analysis,
specif	fic volatile index, ash content, Calo	rific value by bomb calorimeter and Junker's gas calorimeter.
Liaui	d fuels – Flash point, viscosity,	carbon residue, aniline point, pour point – Determination and
-	ficance	
sigini		
	Contemporary learni	
Expe	rt lectures, YouTubes Videos, An	imations, NPTEL, MOOC videos, online seminars - webinars for
streng	gthening the subject matters.	
	Total Lecture hours	45 hours
Text	Book(s)	
1		ic Analysis – A.I. Vogel, ELBS, III Edn., 1982.
2	Vogel's Text Book of Quantitat	ve Chemical Analysis - A.I. Vogel, Pearson Education Ltd, V
	Edition, 2001.	
3	•	– Willard, Merit, Dean and Settle, CBS Publ. &
	Distributors, VI Edition, 1986.	
4.	•	hristian & James, E. O'Reilly, Allyn & Bacon Inc, II Edition, 1986
5.		s – Douglas A. Skoog, Saunders College Publ. III Edition,
6	1985. Text Book of Quantitative Inorga	nic Analysis – A.I. Vogel, ELBS, III Edition, 1976, and IV Edition
0	1985.	ine Anarysis – A.I. Vogel, EEDS, III Edition, 1970, and IV Edition
7		nistry – D.A. Skoog and D.M. West, Holt Rinehart and Winstor
	Publications, IV Edition, 1982.	
8	Quantitative Organic Analysis – S	Siggia and J.G. Hanna, Wiley –Intersci. Publ. IV Edition, 1979.
	rence Books	
	Fuel Testing – G.W. Himus, Leona	
	Technical Methods of Analysis – I	
3	Analytical Chemistry – J.G. Dick,	
4		ls – C.V. Agarwal, TARA Publicaions, II Edition, 1965.
Kelat	ted Online Contents [MOOC, SW	AYAM, NPTEL, Websites etc.]
1.	https://youtu.be/KgUmNQD6m5Q	-Alloy and their Properties
2.	https://youtu.be/m-5EnGAMKF4-	
3.	https://youtu.be/qu1v60L1Chk- Pr	
4.	https://youtu.be/_GqBl83Koig- Te	sting for Hydrogen, Oxygen, Carbon Dioxide, Ammonia
	Course Designed By: Dr. Deepa P	Nambiar and Dr. K. Ravichandran

Mappin	Mapping with Programme Outcomes*												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	S	М	S	М	L	М	М	М	S	L			
CO2	S	S	S	S	S	S	S	М	М	М			
CO3	S	S	S	S	М	М	S	М	S	S			
CO4	М	S	S	S	М	S	S	М	S	S			
CO5	S	М	S	М	S	М	S	S	S	S			

Course	Elective (II)
Course Code	CHE E202
Title of the	FUNCTIONAL GROUP TRANSFORMATION IN ORGANIC CHEMISTRY
Course	
Credits:	3
Pre-requisites,	Students should know about various types of functional groups as well as organic
if any	reactions
Course	• To learn various types of functional group transformations involving different types
Objectives	of oxidation reactions
	• To learn functional group transformations involving different types of reducing agents
	• To understand different types of functional group transformations involving
	miscellaneous category of reagents/name reactions
	• To identify suitable reagents for carrying specific synthetic transformations.
Course	On the successful completion of the course, student will be able to:
Outcomes	
CO 1	Understand different types of functional group transformations involving oxidizing
	agents (K2-K5)
CO 2	Familiarize with functional group transformations involving reducing agents (K2-K6)
CO 3	Understand functional group transformations involving miscellaneous category of
	reagents/name reactions (K2-K5)
CO 4	Identify suitable reagents to perform chemo-selective functional group transformations (K1-K6)
CO 5	Evaluation of different types of synthetic transformations involving oxidizing, reducing
	and miscellaneous category of reagents (K1-K6)
K1-Remember; K	2 -Understand; K3- Apply; K4 -Analyze; K5 -Evaluate; K6 -Create
Unit – I	(15 hrs)
FUNCTIONAL	GROUP TRANSFORMATIONS USING OXIDIZING REAGENTS
Use of Chromiun	n reagents (CrO3, K2Cr2O7, CrO2Cl2, PCC, PDC and PFC). Use of Manganese reagents
(KMnO4, MnO2,	CTAP). Use of RuO4, KBrO3, DMSO, NCS, NaIO4, peracids and boranes.
Unit – II	(15 hrs)
FUNCTIONAL	GROUP TRANSFORMATIONS USING REDUCING REAGENTS
Use of NaBH4, N	aCNBH3, LiAlH4 and Bu3SnH; Use of Sn/HCl, Zn/HCl, Hydrazine, Li-NH3, Na/alcohol,
Pd/H2 and Raney	Ni.

Unit – III

FUNCTIONAL GROUP TRANSFORMATIONS USING MISCELLANEOUS TYPE OF REAGENTS Use of SOC12, PBr3, PPh3-CC14, LiBr, NaI, NBS, PPh3-X2, Lawesson's reagent, Mitsunobu reagent, CH2N2, TMSCHN2 and Barbier-Weiland degradation. Conversion of aldehyde to ketone and vice versa; Conversion of aldehyde to cyanide, Conversion of cyanide to ester, Conversion of ketone/aldehyde to phenol; conversion of ketone to enone.

Contemporary Learning

15 hours

Expert lectures, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters. Assignment and class room seminar

	Total Lecture hours 45 hours
Reading List	Organic Chemistry Portal: https://www.organic chemistry.org/ reactions.htm
(Print and	Organic Synthesis Portal: <u>http://www.orgsyn.org/</u>
Online)	Organic Chemistry notes: <u>https://chemistrynotes.com/pages/organic-</u> <u>chemistry-</u>
	notes
	• <u>https://nptel.ac.in/content/storage2/courses/104103071/pdf/mod8.pdf</u>
	• YouTube <u>http://Leah4sci.com/chirality;</u>
	• YouTube: https:// <u>www.youtube.com/watch?v=yZ8JDDnyxC4</u>
Recommended	• Jerry March. (2006); Advanced Organic Chemistry, 4 th Edition, Wiley.
Texts/Reference	• Carey, F. A. & Sundberg, R. J. (2008); Advanced Organic Chemistry- Part A and
books	B. 5 th Edition, Springer.
	• Clayden, J, Greeves, N. Warren, S. (2017); Organic Chemistry, 2 nd Ed, Oxford
	University Press.
	• Graham Solomons, T. W, Fryhle, C. B. (2014); Organic Chemistry, 10 th Edition,
	Wiley.
	• Smith, M. B. (2015); March's Advanced Organic Chemistry: Reactions,
	Mechanisms, and Structure, 7 th Edition, John Wiley & Sons, Inc.

Mapping with Programme Outcomes*

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	L	S	S	S	М	М	L	М	М
CO2	М	М	S	S	S	L	L	М	L	М
CO3	М	М	S	М	S	М	L	L	М	S
CO4	М	М	М	М	S	S	L	М	L	S
CO5	М	М	S	М	S	М	L	L	L	М

Course	CHE E302	Elective	Credits - 3					
Code								
Title of the		MACROMOLECULAR CHEMISTRY - I						
course								
Course Obje	ectives:							
The main obj	ectives of this cours	se are,						
• To provi	de knowledge abo	ut nomenclature of polymer, degree, types, mechanism	and kinetics of					
polymeri	zation.							
• To under	rstand the principle	es of polymer reactivity, stereochemistry of polymerization	on and various					
methods	of polymerization.							
• To know	the polymer crystal	lization, glass transition temperature and Physical and mecha	nical properties					
of crystal	line and amorphous	s polymers.						
• To impr	ove their analytic	al skill to analysis and testing of polymer by FT-IR,	, NMR, XRD,					
TGA/DT	A/DSC.							
• To recog	nize the importance	of specialty polymers.						
Pre-requisite	es, if any:							
-		vel fundamental aspects on polymer chemistry.						
Course Outo								
•		uccessfully, the students will be able to,						
• CO1: Re	call the introductory	y aspects of polymer chemistry. (K1)						
• CO2: Ur	iderstand the synthe	sis and characterization methods. (K2)						
• CO3: Ap	pply the knowledge	of polymers in diverse areas of basic sciences. (K3)						
• CO4: An	alyze and Evaluate	the research problems in different areas of polymer chemistry	y. (K4 and K5).					
• CO5: Cr	eate new concepts to	o expand the dimensions of polymer chemistry. (K6)						
K1 - Remem	ber; K2 - Understan	d; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create						
UNITS								
UNIT - I: Ba	sic Concepts of Po	lymer Chemistry	(9 Hours)					
Definition, n	nomenclature of po	olymers, functionality of monomers, degree of polyme	erization. Vinyl					
monomers, ir	nitiators, Kinetic cha	ain length, Percentage conversion, chain						
transfer agen	ts, Mayo's relation,	inhibitor, modifiers, and retarders.						
Types of po	lymerization: addi	tion, condensation and copolymerization. Mechanism and	kinetics of free					
radical, catio	onic and anionic po	olymerization. Copolymerization: free radical, ionic. Copo	lycondensation.					
Types of cop	olymers, copolyme	rization reaction, copolymer - comonomer equation, reactiv	ity ratios. Mark					
Howink equa	ation.							

UNIT - II: Polymerization Reactions and Techniques

Principles of polymer reactivity: Photolytic, photosensitized polymerization. Cyclo, electro- initiated, cross-linking, graft and block copolymerization. Polymer reagents, polymer catalysis.

Stereochemistry of Polymerization: Types of stereoisomerism in polymers, properties of stereoregular polymers. Stereospecific polymerization. Ziegler-Natta polymerization.

Various methods of polymerization: solution, bulk, emulsion and suspension.

Electropolymerisation. Comparative accounts. Recycling of polymers.

UNIT - III: Crystal Structure and Properties of Polymers

Polymer crystallization, factors affecting crystallisability. Morphology of crystalline polymers, effect of crystallisability on the properties of polymers. Glass transition temperature(Tg) and its determination. Dependence of Tg on polymer structure. Melting temperature.

Physical and mechanical properties of crystalline and amorphous polymers. Thermal treatment of polymers, Zimmplot.

UNIT - IV: Characterization of Polymers

Number average, weight average and viscosity average molecular weight of polymers. Molecular weight determination by light scattering, osmotic, centrifuge and viscosity methods.Gel permeation chromatography. Analysis and testing of polymer by FT-IR, NMR, XRD,

TGA/DTA/DSC.

UNIT - V: Specialty Polymers

Polymers in catalysis and drug delivery, Thermosensitive and photo-sensitive polymers, Thermally stable polymers, Biodegradable polymers, Conducting polymers, Fire retardant polymers, polymer electrolytes, Liquid crystalline polymers, Dentrimers, Adhesives, Foams, Fibers.

Contemporary Learning

Expert lectures, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters. Assignment and class room seminar

15 hours

Total Lecture hours

Text Books:

- 1. F.W. Billmeyer, Text Book of polymer science Wiley Interscience, 1984.
- 2. A. Rudin, the elements of polymer science and engineering. An introductory text for engineers and chemists, Academic Press, New York, 1982.
- 3. M.S. Bhatnagar, A Textbook of Polymers. Vol I. S.Chand & Company Ltd 2004.
- 4. Bill Meyer. A Text Book of Polymer Chemistry, Singapore: John Wiley & Sons 1994,
- 5. E.C. Carraher, Introduction to Polymer Chemistry. Taylor & Francis, Inc. 2006.

(9 Hours)

45 hours

(9 Hours)

(9 Hours)

(9 Hours)

- 6. Gowariker & Viswanathan, Polymer Science. Wiley Eastern, 1986.
- 7. S.P. Mishra, Polymer Chemistry. New Delhi: Wiley Eastern Ltd 1993.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1. https://www.youtube.com/watch?v=54urJPOnaeU&list=PLyqSpQzTE6M_KQ5MqUkoOqAx xOrdvFOMB
- 2. https://www.youtube.com/playlist?list=PLcCIZORoVQghF126hJD0yU6JZ6ngbOb5a
- 3. https://www.youtube.com/watch?v=nSAvyQajVzE

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	S	М	М	S	М	М	S	М	S
CO 2	S	М	S	М	М	М	S	М	М	S
CO 3	М	S	L	S	М	S	М	L	S	М
CO 4	М	S	L	L	М	М	S	М	S	М
CO 5	М	М	S	S	S	М	S	М	М	S

Mapping with Programme Outcomes: (S-Strong, M-Medium, L-Low)

SEMESTER III

Core/ Elective	Course	Title of the Course	Credits
/Supportive	Code		
Core	CHEC601	PHYSICAL METHODS IN CHEMISTRY	4
Course Objectiv	'es:		
The main objecti	ves of this course are	2	
• To provide the	ne deep understandir	ng of electronic and structural changes of metal coordinat	ion complexes
1	1	e e	1

- To understand basic theory& instrumentation involved in the origin of spectroscopy.
- To understand UV, IR, NMR and Mass spectra and their significance in the characterization of organic compounds.
- To illustrate the basic principle of splitting of spectral line of inorganic complexes in the presence of magnetic field upon interaction with electromagnetic radiation.
- To study the role of optical spectroscopy (UV, IR), NMR spectroscopy to understand the structure of organic compounds.
- To learn ESR and their importance in the characterization of radicals.
- To understand basic theory & instrumentation of analytical techniques of characterization

Pre-requisites, if any:

Students should know the the fundamental aspects on spectroscopy and their importance in the characterization of chemical compounds. Basic knowledge on UV-Vis, IR, NMR and Mass spectroscopic techniques will be advantageous.

Course Outcomes:

After completion of this course successfully, the students will be able,

- CO1: To interpret absorption bands in the visible, IR and microwave regions, to understand bonding, geometry and reactivity of inorganic coordination complexes. (K1 K4)
- CO2: To understand the basic concept, interpretation and application of electronic spectra of hydrogen and many electron atoms, and to derive angular momentum of many electron atoms and term symbols of atoms. (K2 – K4)
- **CO3:**TogainKnowledgeonvibrational,ATRandimagingmodestocharacterizechemicalcompo unds
- CO4: To understand the basic theory as well as instrumentation techniques for recording UV, IR, NMR, MS, XRD, Raman, Mossbauer and Thermal spectra of chemical compounds. (K2–K5)
- CO5: To Record and interpret UV, IR, NMR, TGA, DSC, XRD, Raman, Mossbauer, ESR and MS spectra of chemical compounds. (K3&K4).
- **CO6:**To understand the nature of functional groups present in chemical compounds using destructive as well as non-destructive spectral techniques. (**K5 &K6**)

K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5 - Evaluate; K6 - Create

UNITS

UNIT-I: Electronic Spectroscopy (PHYSICAL&INORGANIC)

Spectra of hydrogen and many electron atoms, angular momentum of many electron atoms, term symbols, spectra of many electron atoms- Zeeman effect. Spectra of diatomic molecules, Representation of electronic states through potential energy diagrams-Frank Condon principle.

Intensities of electronic transitions-theoretical treatment of absorption intensities, transition dipole moment integral, oscillator strength, selection rules parity, spin and symmetry considerations, Factors inducing forbidden transitions vibronic and spin orbit coupling, polarization bands.

Spectra of formaldehyde, but adiene and benzene –group theoretical discussion.

Electronic spectra of inorganic complexes – Selection rules (Laporte, orbital and spin selection rules), band intensities, band widths, spectra in solids, spectra of aqueous solutions ofd1-d9 ions in Oh and Td environments.

UNIT-II: Spectroscopy (ANALYTICAL)

Mossbauerspectroscopy–Introduction,principle,instrumentation,recoilenergy, Doppler effect, number of MB signals, isomer shift, quadrupole splitting, magnetic hyper fine splitting applications to57Fe, 119Sn and 129Icompounds

Raman Spectroscopy: SERS, SERRS. ATR techniques – UV, IR, Raman. Principle & application of ORD and CD in the identification of complexes.

Thermal methods of analysis–TGA, DTA and DSC –Principle and applications.

UNIT-III:NMR (ORGANIC)

Origin of NMR spectrum-Nuclear spin states – NMR active nuclei – Nuclear magnetic moment– Larmor equation–AbsorptionofenergyandResonance–Populationdensityofnuclear spin states.

Saturation phenomena – Relaxation mechanisms, Bloch equation (only significance and derivation not required).Comparison of C W and F T instrument – Chemical shift - Standards in NMR – Shielding and Deshielding – Factors affecting chemical shift – electronegativity, hybridization, hydrogen bonding - anisotropic effect – double, triple bond, aromatic compounds and carbonyl compounds. Spin-spin coupling – splitting origin and rules –factors affecting coupling constant: cis, trans, gem, ortho, meta, para coupling – exchange with deuterium. Vicinity of the proton, Long range coupling, Karplus equation and curve. 1J, 2J, 3J, 4Jand 5J coupling in NMR, order of NMR spectrum. Spin systems: Two interacting nuclei: A2, AB, AX, AA'BB', dd, pair of doublet, AB quartet.

UNIT-IV:UV,IR and MS(ORGANIC)

Electronic absorption-Beer-Lamberts law, Types of electronic excitation. Chromophore and Auxochrome-Bathochromic and Hypsochromic shift. UV-vis spectra of simple organic compounds such as alkenes, phenols, anilines, carbonyl compoundsand1,3- diketones. Wood ward and Fieser rule for calculation of λ max values of dienes and unsaturated ketones. Infrared Spectra: Identification of functional groups in Organic Compounds, Finger printregion. Inter and Intramolecular hydrogen bonding Origin, basics and bloc diagram of Mass spectrum-Various types of Ionization techniques- Stability of Molecularions, Metastableions. Base peaks and Isotope peaks. Fragmentation patterns of organic molecules.

(15 Hours)

(15 Hours)

(15 Hours)

(15Hours)

Contemporary Learning

Expert lectures, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters. Assignment and class room seminar

Total Lecture hours

60 hours

Text Books:

- Basic Principles of Spectroscopy, R.Chang, McGraw Hill
- Fundamentals of Molecular Spectroscopy, Fourth Edition, Colin N. BANWELL and Elaine M. Mc CASH Kemp,W.(2016)
- Organic Spectroscopy, 3rd Edition, Palgrave. Kalsi, P.S (2016)
- Spectroscopy of Organic Compounds, 7th Edition, New Age International. Silverstein, R.M, Webster, F.X, Kiemble, D. J, Bryce, D.L(2015)
- Spectrometric Identification of Organic Compounds, 8th Edition, Wiley.Jag Mohan (2016)
- Organic Spectroscopy Principles & Applications, 3rd Edition, Narosa Publishing House. Pavia, L, Lapman, G. M, Kriz, S, Vyvyan, J.- R(2015)
- Introduction to Spectroscopy, Cengage Learning, ISBN13: 978-81-315-2916-4.
 PhysicalMethodsinChemistry,R.S. Drago,W.B.Saunders Co., 1977. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi
- Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. Pearson Education, 2006.
- Principles of Instrumental Analysis Douglas A. Skoog, F. Holler, Stanley Crouch,7thEdnBrooks/Cole publish; 7th edition, 2017

Reference Books:

- 1. Structural Methods in Inorganic Chemistry, E.A.V. Ebsworth, D.W.H. Rankin and S. Craddock, ELBS.
- 2. Physical Methods For Chemists, Russell S. Drago Second Edition, 2016.
- 3. Huheey, J.E.- Inorganic Chemistry,4th Edition, Harper and Row.
- 4. Lambert, J.B, Shurvell, H.F, Lightner, D.A, Graham Cooks, R (1998); Organic Structural Spectroscopy, Prentice Hall, ISBN: 0-13-258690-8.
- Macomber, R.S(1998); A complete introduction to Modern NMR Spectroscopy, John Wiley, ISBN: 0-471-15736-8.
- Willard, H.H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F. A. Jr., CBS Publishers & Distributors; 7th edition (2004).

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1. https://nptel.ac.in/content/storage2/courses/102103044/pdf/mod2.pdf
- 2. https://www.slideshare.net/LOKESHPANIGRAHI/spectroscopy-134933430
- 3. https://www.slideshare.net/guest824336/introduction-to-spectroscopy
- 4. <u>http://web.iyte.edu.tr/~serifeyalcin/lectures/chem305/cn_1.pdf</u>
- 5. https://www.youtube.com/watch?v=qtpVfccYEHE&t=98shttp://www.digimat.in/nptel/courses/video/104 106122/L54.html

- 6. https://pubs.rsc.org/en/content/articlelanding/2018/cs/c6cs00565a
- 7. <u>https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/</u> Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Magnetic_Reso nance_Spectroscopies/Electron_Paramagnetic_Resonance/EPR%3A_Application

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO1	М	S	S	М	М	S	М	М	L	L
CO2	S	М	S	S	М	М	S	М	L	L
CO3	S	М	S	М	L	М	S	L	L	L
CO4	М	S	S	S	L	S	М	L	L	L
CO5	S	S	S	М	L	L	S	L	L	L
CO6	S	М	S	М	L	М	S	L	L	L

Mapping with Programme Outcomes: (S-Strong, M-Medium, L-Low)

Course	Core
Course Code	CHEC204
Title of the	ORGANIC CHEMISTRY PRACTICAL - II
Course	DOUBLE STAGE ORGANIC PREPARATIONS
Credits	3
Prerequisites,	Basic knowledge on simple organic preparations will be essential
if any	
Course	The main objectives of this course are to:
Objectives	• To provide practical training on double stage organic preparations
	• Learn about the purification techniques of organic compounds by recrystallization and column chromatography
	 To understand the mechanism and intermediates inorganic reaction.
	 To characterize the structure of the purified organic compound by IR and NMR.
Correct	
Course	On the successful completion of the course, student will be able to:
Outcomes CO1	Gainpracticalskillsondoublestagepreparationsoforganiccompounds(K1-K6)
CO1 CO2	Monitoring the progress of the reaction by TLC(K2-K5)
CO3	Have experience on purification of organic compounds by recrystallization or column
005	chromatography(K2-K4)
CO4	Get adequate knowledge in synthetic organic chemistry(K3-K5)
CO5	Characterization of prepared compounds by IR, ¹ H NMR and Mass spectra(K2-K5)
K1-Remember;K2	2-Understand;K3-Apply;K4-Analyze; K5-Evaluate;K6-Create
DOUBLE STAG	E ORGANIC PREPARATIONS (60 Hours)
1. Synthesis of c	rganic compounds involving Friedel- Crafts alkylation and acylation reactions
2. Synthesis of n	itro compounds
3. Synthesis of h	alogenated compounds
4. Synthesis of a	Idehydes involving formylation reactions
5. Synthesis of c	rganic compounds by using Pd- catalyzed coupling reactions
6. Synthesis of c	rganic compounds involving nucleophilic substitution reactions
Reading List	Organic Chemistry notes:
(Print and	YouTube https://www.youtube.com/watch?v=N96JaRnE7n0
Online)	YouTube https://w <u>ww.youtube.com/watch?v=0RwDowIgXqk</u>

Recommended	• Furniss, B.S.; Hannaford, A.J.; Smith ,P. W. G.; & Tatchell, A. R. (2003); Vogel's
Text /	Textbook of Practical Organic Chemistry, 5 th Edition., Pearson Education
Reference	• Mohan, J. (2010); Organic Analytical Chemistry, Theory and Practice, Narosa.
Books	• <u>Mann, F. G & Saunders</u> , B. C. (2009); Practical Organic Chemistry, fourth edition,
	Pearson Education India
	• Gnanaprakasam, N. S. & Ramamurthy, G. (2009); Organic Chemistry Lab Manual,
	Viswanathan, S., Printers& Publishers Pvt Ltd.
	• Ahluwalia, V. K. Bhagat, P. & Agarwal, R. (2013); Laboratory Techniques in
	Organic Chemistry, I K International Publishing House Pvt. Ltd

Mapping with Programme Outcomes*

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	L	М	М	М	М	М	М
CO2	М	L	L	М	М	М	М	М	М	М
CO3	S	L	М	L	М	М	М	М	S	S
CO4	М	М	М	М	М	L	L	S	L	L
CO5	L	М	S	М	L	М	М	L	L	L

*S-Strong

M-Medium L-Low

Course	Core
Course Code	CHEC205
Title of	ORGANIC CHEMISTRY PRACTICAL -III
The Course	MULTI-STAGE ORGANIC PREPARATIONS
Credits	3
Pre-requisites,	Basic knowledge on simple organic preparations will be essential
if any	
Course	The main objectives of this course are to:
Objectives	• To provide practical training on multi-stage organic preparations
-	• Learn about the purification techniques of organic compounds by recrystallization and column chromatography
	 Learn about preparation of dry solvents to carryout moisture sensitive organic
	reactions
	• To understand the mechanism and intermediates in organic reaction
	• To characterize the structure of the purified organic compound by IR and NMR
Course	On the successful completion of the course, student will be able to:
Outcomes	
CO1	Gain practical skills in the preparations of organic compounds involving multi-steps
	(K1-K6)
CO2	Monitoring the progress of the reaction by TLC (K2-K5)
CO3	Have experience on preparation of dry solvents to carry out moisture sensitive organic
	reactions and purification of organic compounds by recrystallization or column
	chromatography(K2-K4)
CO4	Get adequate knowledge in synthetic organic chemistry (K3-K5)
CO5	Characterization of prepared compounds by IR, ¹ HNMR and MS (K2-K5)
K1-Remember; K	2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Create
Units - MULTI-S	TAGE ORGANIC PREPARATIONS (60 Hours)
1. Synthesis of c	organic compounds involving condensation reactions
2. Synthesis of h	eterocycles
3. Synthesis of c	lefinic compounds using Wittig reactions
4. Synthesis of c	organic compounds involving oxidation/reductions
5. Synthesis of c	organic compounds involving protection/deprotection reactions
6. Synthesis of c	organic compounds involving Lewis acid/Bronsted acid mediated cyclization reactions
Reading List	Organic Chemistry notes:
(Print and	YouTube https://www.youtube.com/watch?v=N96JaRnE7n0
Online)	YouTube: https://www.youtube.com/watch?v=0RwDowIgXqk

Recommended	• Furniss, B. S.; Hannaford, A. J.; Smith, P.W.G. &Tatchell, A.R. (2003); Vogel's
Text/Reference	Textbook of Practical Organic Chemistry, 5th Edition., Pearson Education
Books	• Mohan, J. (2010); Organic Analytical Chemistry, Theory and Practice, Narosa.
	• Mann, F. G & Saunders, B. C. (2009); Practical Organic Chemistry, fourth edition,
	Pearson Education India
	• Gnanaprakasam, N. S. & Ramamurthy, G. (2009); Organic Chemistry Lab Manual,
	Viswanathan, S., Printers & Publishers Pvt Ltd
	• Ahluwalia, V. K.; Bhagat, P. & Aggarwal, R. (2013); Laboratory Techniques in
	Organic Chemistry, I K International Publishing House Pvt. Ltd

Mapping with Programme Outcomes*

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	М	М	М	L	М	М	М	М	М	М
CO2	М	L	L	М	М	М	М	М	М	М
CO3	S	L	М	L	М	М	М	М	S	S
CO4	М	М	М	М	М	L	L	S	L	L
CO5	L	М	S	М	L	М	М	L	L	L

Course	Elective (III)
Course Code	CHE E601
Title of the Course	BIOLOGICAL CHEMISTRY
Credits	3
Prerequisites, if any	Student able to understand the role of bio-organic compounds. Students should know about the fundamental aspects on biological system, mechanism, kinetics and analytical tools.
Course Objectives	 To understand the function of carbohydrate in biological chemistry, determination of ring size and study of starch and cellulose. To understand the significances of amino acids, proteins nucleic acids in biological system. Illustrate the importance of the various elements in the biological system and to gain more insights into the binding of metal complexes with biomacromolecules and transport and storage mechanism involving in the metalloenzymes.
	 To understand the role of heavy metals in the human body- therapeutic and toxicity levels.
Course Outcomes K1-Remember;K	 On the successful completion of the course, students will acquire knowledge: CO1 - To learn about structural and functions of carbohydrates, lipids, membranes, amino acids, proteins, antibiotics and vitamins(K1-K5) CO2 – Understand structure and biological importance of RNA and DNA (K2-K4) CO3 - Understand the key function of metal ions such as Fe, Co, Ni Zn and Cu in living system, particularly in transports (energy and O2), storage, electron- and proton transfer, hydrolysis, etc. which are taking place at the active site of metalloproteins and enzymes(K1-K4) CO4 – Toxicity of metals and their effects in the biological system(K1-K4) CO5 – To evaluate toxicity of drugs used in cancer and radio diagnosis (K5&K6) 2-Understand;K3-Apply;K4-Analyze; K5-Evaluate;K6-Create
Units	
Unit I	BIO-ORGANICCHEMISTRY (12 Hours)
determination of r A brief study of st Lipids and Mem	Pyranose and furanose forms of aldo-hexose and ketohexose- methods used for the ring size-conformation of aldo- hexopyranose-structure and synthesis of lactose and sucrose. tarch and cellulose. branes: Molecular structure of lipids. FattyAcids,Triglycerides Types of membrane lipids Proteins: Amino acids and Protein structure, Analysis of N-terminal and C- terminals in a
polypeptide. Sang	ger method, Edman degradation and Enzymatic analysis. Primary, secondary and tertiary teins. Structure of collagen, myoglobin and haemoglobin.

Nucleic acids: Chemistry of nucleic acids, nucleosides and nucleotides – Structure RNA and DNA and their biological importance.

Unit – II	BIO-INORGANICCHEMISTRY	(11 Hours)					
Essential and trace metal ions: Enzymes - Nomenclature and classification - Coenzymes-Vitamin B12,							
Carboxy peptidase and superoxide dismutase - Heme-enzyme-Peroxidase and catalases. Oxygen carriers:							
Hemeproteins -	Hemeproteins - Hemoglobin, myoglobin - Structure Oxygenation and stereochemistry - Bohr effect. Non-						
heme oxygen carriers - Hemerythrin and hemocyanin. Nitrogen fixation: Introduction, types of							
nitrogen fixing microorganisms. Nitrogenase enzyme-Metalclusters in nitrogenase- redox property-							
Dinitrogen complexes- transition metal complexes of dinitrogen - Nitrogen fixation via nitride							
formation and reduction of dinitrogen to ammonia.							
Unit - III	BIO-PHYSICALCHEMISTRY	(11 Hours)					

Thermodynamicsandbiology-Basicconceptsofstructureandfunctionality- membranes-structure, function transport properties, aspects of electrochemical phenomena– active transport, ionophores, biological energy storage systems–stepwise mechanism of photosynthesis versus potential. Enzymes-Nomenclature and classification, chemical kinetics, the free energy of activation and the effects of catalysts, kinetics of enzyme catalyzed reactions – Michaelis - Menten equation – Effect of pH, temperature onenzymereactions,Factorscontributingtothecatalyticefficiencyofenzymes.

Unit – IV BIO-ANALYTICALCHEMISTRY

Essentials of trace elements and chemical toxicology: Trace elements in biological system. Metal ion toxicity - classes of toxic metal compounds– detoxification. Metals in medicine: Anti-arthritis drugs – Au and Cu in rheumatoid arthritis – Li in psychiatry – Pt, Au and metallocenes in anti- cancer drugs-metals in radio diagnosis, radiotherapy and magnetic resonance imaging. Transport and storage of metals: Mechanism – Fe, Cu, Zn and V storage and transport – metallothioeins. Molecular mechanism of iron transport across the membrane – sodium and potassium ion pumps.

(11 Hours)

Contemporary Learning 15 hours

Expert lectures, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters. Assignment and class room seminar

	Total Lecture hours	45 hours
$\mathbf{D}_{1} = \mathbf{J}_{1}^{1} = \mathbf{J}_{1}$		

Reading List(Print and Online)

- <u>https://www.youtube.com/watch?v=iuW3nk5EADg</u>
- <u>https://www.youtube.com/watch?v=aeC7M9PDjQw</u>
- <u>https://www.youtube.com/watch?v=DhwAp6yQHQI</u>
- <u>https://www.youtube.com/watch?v=ZqoX2W1N6l0</u>
- https://www.youtube.com/watch?v=lsNalwRnaq0&list=PLbMVogVj5nJSHhL_cMKfzLv556ddrIT90
- https://www.youtube.com/watch?v=pXztk04J7u0&list=PLFW6lRTa1g83-gUOcT3ay875UG3a9Mu11

Recommended Text/ Reference Books

- Zubay, G,L.(1997); Biochemistry,4thEdition, Brown (WilliamC.) Co
- Nelson, D, L Lehninger, A,L Cox M, M.(2008); Principles of Biochemistry, 5thEdition, NewYork: W.H.
 Freeman.
- John McMurray, (2008); Organic Chemistry, 8th Edition, Brooks/Cole.
- Finar,I.L.Vol2(2018);Organic Chemistry: Stereochemistry and the Chemistry of Natural product, IIIrd Edition, Pearson
- <u>Williams</u> D.R.(1976); Introduction to Bioinorganic Chemistry, Thomas, ISBN-13:978-0398034221.
- Kaim, W, Schwederski, B, Klein, A.(2013);Bioinorganic chemistry: Inorganic Elements in the chemistry of life,2nd Edition, Wiley.
- DasAsimK.(2007);BioinorganicChemistry,1stEdition,BooksandAllied (P)Limited.
- Mugherjee G.N, Arabinda D,(1993);Elements of Bioinorganic Chemistr y,4thEdition,U.N.Dhur&SonsPvt.Ltd.
- Satake M. Mido Y.(1996); Bioinorganic Chemistry, ISBN 81-7141-301- 1, Discovery Publishing House, New Delhi.
- Eichorn,G,(1973); Inorganic Bio-Chemistry Vol. I and II, IVEdition, Elsevier.
- Zhimin,T,(2008); Analysis of Cytotoxicity of Anticancer Drugs,VDM Verlag Dr.Mueller E.K.ISBN:9783639063486,3639063481

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	L	М	L	М	М	М	М	М	L	М
CO2	L	М	L	S	L	М	L	М	М	М
CO3	L	L	М	S	L	L	М	L	L	М
CO4	L	L	L	М	L	М	L	М	L	L
CO5	М	L	М	М	L	L	М	L	L	S

Mapping with Programme Outcomes*

Course	Elective(IV)								
Course Code	CHE E604								
Title of the	CHEMISTRY OF HETEROCYCLES, ORGANOLITHIUM AND ASYMMETRIC								
Course	SYNTHESIS								
Credits	3								
Prerequisites,Students should know about the basic concept of five and six member heteIf anyasymmetric synthesis									
If any	• Understanding different type of heterocycles and their stability								
Course	Understanding different type of heterocycles and their stability								
Objectives	Reactivity pattern of different types of heterocyclic structures								
	Biological significance of heterocyclic frameworks								
	• To correlate the selectivity and reactivity pattern of heterocycles								
	• Various types of asymmetric synthesis and their synthetic utility								
	Importance of heterocyclic frame works as drug intermediates								
Course Outco	omes								
On the	e successful completion of the course, student will be able to:								
• CO1 – U	nderstand the Importance of heterocycles and their stability (K1 &K2)								
• CO2- Un	derstand the synthesis and reactivity of heterocycles (K1& K2)								
• CO3- Un	derstand the significance and utility of heterocycles as drugs/drug in term ediates(K3-K5)								
• CO4- Un	derstandthesignificanceofnaturallyoccurringheterocyclicframeworks(K4-K6)								
• CO5 – U	nderstand and design the synthesis of chiral compounds (K3-K6)								
K1-Remember	r; K2 -Understand; K3- Apply; K4 -Analyze; K5 -Evaluate; K6 -Create								
Units									
	TIVE MEMBER HETEROCYCLES WITH ONE HETEROATOM (11 Hours)								
11	and thiophene. Synthesis, reactions including lithiation, electrophilic substitution,								
	ubstitution, aromatic character, Comparative study of their reactivity.								
Unit - II F	IVE MEMBER HETEROCYCLES WITH TWO HETERO ATOMS (11 Hours)								
Imidazole, ox	azole, thiazole and their benzo analogues- Synthesis, reactivity including lithiation and								
aromatic chara	acter. Comparative study of their reactivity. Isoxazole, isothiazole and pyrazole- Synthesis and								
reactivity inc	luding lithiation. Indole, benzo[b]thiophene and benzo[b]furan-Synthesis and reactivity								
including lithi	ation.								
Unit- III S	IXMEMBER HETEROCYCLES WITH ONE HETERO ATOM (11 Hours)								
	Pyridine-Synthesis and reactivity; Pyridine-N-oxide-Synthesis and reactivity; quinoline and								
i	soquinoline-synthesis and reactivity. Pyrimidines and Purines-Synthesis and reactivity								
(.	lithiation also included)								

Unit- IV ASYMMETRIC SYNTHESIS

Selectivity, Resolution-Kinetic resolution reactions, Desymmetrization, Asymmetric Induction, Chiral auxiliary.Generation of Asymmetric synthesis-Substrate-Auxiliary-Reagent and Catalyst Control.

Auxiliary controlled Alkylation of chiral enolates, Evans oxazolidones, chiral hydrozones and chiral imines. Enders RAMP/SAMP and chiral sulfoxide. Asymmetric Diels's Alder reaction, Simmon's- Smith reaction and Aldol reaction.

Asymmetric oxidation [dihydroxylation, epoxidation Sharpless, Jacobsen, Shi] and Asymmetric reduction (Noyori, Corey, Pfaltz) - Boranes reduction.

Contemporary Learning 15 hours

Expert lectures, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters. Assignment and class room seminar

Total Lecture hours

45 hours

Reading List (Print and Online)

- Organic Chemistry Portal: <u>https://www.organic- chemistry.org/reactions.htm</u>
- Organic Synthesis Portal: <u>http://www.orgsyn.org/</u>
- Organic Chemistry notes: <u>https://chemistrynotes.com/pages/organic- chemistry-notes</u>
- <u>https://nptel.ac.in/content/storage2/courses/104103071/pdf/mod8.pdf</u>
- YouTube http://Leah4sci.com/chirality
- YouTube: https://www.youtube.com/watch?v=yZ8JDDnyxC4

Recommended Text/Reference Books

- Bansal, R. K (2014); Heterocyclic Chemistry, 5thEdition, NewAge International
- Joule, J. A& Mills, K(2010);HeterocyclicChemistry, 5thEdition, Wiley
- Finar,I.L.Vol2(2018); Organic Chemistry: Stereochemistry and the Chemistry of Natural product, IIIrd Ed, Pearson
- Clayden, J, Greeves, N. Warren, S. (2017); Organic Chemistry, 2nd Edition, Oxford University Press
- Wade, L. G(2018); Organic Chemistry, 8thEdition, Pearson India
- Graham Solomons, T. W, Fryhle, C. B.(2014); Organic Chemistry, 10th Edition, Wiley
- Li,J.J(2010), Name Reactions in Heterocyclic Chemistry; Wiley (India), ISBN: 978-81-265-2387-0
- Gawley, R.E & Aubé, J (2012); Principles of Asymmetric Synthesis, 2ndEdition, Elsevier
- Caprio, V, Williams, J. M.J (2009); Catalysis in Asymmetric Synthesis, 2ndEdition, Wiley
- Kagan,H.B (1997); Asymmetric Synthesis: Fundamentals and Applications, ISBN-13:978-313137101
- Noyori,R(1994); Asymmetric Catalysis in Organic Synthesis, ISBN: 978-0-471-57267-1

Mapping with Programme Outcomes*

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	L	М	L	L
CO2	L	М	L	S	S	М	М	L	L	L
CO3	М	М	М	S	L	L	L	М	S	S
CO4	L	L	М	S	М	S	М	L	М	М
CO5	L	L	S	S	М	L	М	L	L	L

Semester -III UOMS 147 SOFTWARE PACKAGE FOR CHEMISTS – MATLAB,								
		ORIGIN AND CHEMDRAW						
Core/Elective	SOFTSKILS	Cre	dit-2					
/Supportive								
Pre-requisite	Basic knowled	dge on spread sheets, simple matrix formation, programm	ning and chemical					
	structures							
Course Objectives	5:							
The main objective	es of this practica	l course is able to:						
• Understand the	e basic principles	of MATLAB, programming and plotting						
• Illustrates vario	ous plotting func	tions and formulate the graphs with various fitting analysis						
		ture to complex structure and mechanism of various chemic	cal reactions					
		•						
Expected Course								
	•	e course, student will be able to:						
1 Equipthe	students	with deep knowledge on the matrix programming	g for K1-K3					
	•	d convert respective data functions into plots						
2 Learn vario	us mathematical	functions for various plot functions including 3D plots and	gain K3-K6					
knowledge	on the peak fittin	g, which is applicable for data analysis						
3 Develop th	e skill to draw	various chemical compounds, which is applicable for	their K3-K5					
projects and	l research fields							
K1 - Remember; K	2 - Understand;	K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create	I					
UNIT:1 MAT	LAB		10 hours					
Basic concepts of	MATLAB – Imj	portant functions - Addition, multiplication and subtraction	n of 2x2, 3x3 and					
5x5 matrix – Prog	ramming in MA'	TLAB – Plot functions and programming – 2-D plots (two	vectors) and 3-D					
plots with three veo	ctors – Additiona	al 2D plots						
UNIT:2 OR	IGIN		10 hours					
Spread sheets – Ba	asic of origin – v	various mathematical functions for plotting, statistical calcu	lations – Drawing					
of various plots ar	nd its functions -	- Background correction for various plots - Plot fitting, l	inear, exponential,					
Gaussian and Lore	n Tzian with mul	tiple peak fitting – Bar chats- 3D plotting – error bars in pl	otting.					
UNIT:3 CH	EDRAW		10 hours					
Basic concepts of	chemdraw – Fun	ctions – various arrows used in the chemical equations – c	oncept of drawing					
of chemical equati	ons – Concepts	of valance of atoms in a molecules- Drawing of simple	molecules, macro					
molecules, inorgan	ic complex, org	anometallic complex, peptides and dendrimers - drawing	of catalytic cycles					
and organic reaction	on mechanism							
		Total Lecture hours	30 hours					

Tex	t Books
1.	Amos Gilat, MATLAB: An Introduction with Applications, 4ed , 2012
2.	S.N. Alam, S.S. Alam, Understanding Matlab: A Textbook for Beginners, 2019,
	Dreamtech Press
3.	Jake Woods, Chemdraw Professional (Tutorial User Guide) Kindle Edition,
	2019.
4.	https://www.originlab.com/doc/Tutorials

Mappin	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	L	L	S	М	L	L	L	М	L	L	
CO2	L	L	L	М	L	L	М	S	S	L	
CO3	L	М	L	L	М	М	L	L	S	L	

Cou	rse code		ADVANCED METHODS IN MATERIALS CHARACTERISATION	Credits – 2
~				
	l enhancen	nent	Value added course	
cour				
		ourses	0. 1 1. 111 1	1
Pre-	requisite		Students should know about Materials characterisation to id	dentify the
~			materials structure and nature	
	rse Object			
The	main objec	tives of th	is course are to:	
•	Ability to a	nalyze the	materials	
•]	Knowledge	of procee	ures to be used for different types of characterization technic	ques
•	Spectral Int	terpretatio	n to find out the structure of the materials	
Exp	ected Cou	rse Outco	nes:	
On t	he successf	ful comple	tion of the course, student will be able to:	
1.	Basic kno	owledge a	pout characterization of the materials	K1-K2
2.	To learn	the procee	ure of Spectroscopic methods to characterize the materials	K2-K4
3.	To summ	naries the	lata and interpret the structure of materials	K3-K4
4.	To assess	s the critic	al structure of the materials	K4-K5
5.	To device	e a protoc	ol to analyze the materials	K5 - K6
K1 -	- Remembe	r; K2 - Ui	derstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - C	reate
Valu	ued added	course	Advanced methods in Materials characterisation	15 hours
1.	X-Ray D	iffraction	ınalysis	
2.	FT-IR Ar	nalysis		
3.	UV-Vis A	Analysis		
4.	BET and	Chemisor	ption Analysis	
5.			Analysis	
6.	U		nicroscopy	
о. 7.	C	IR spectro		

SEMESTER IV

Course	Core
Course	CHE C206
Code	
Title of the	ORBITAL SYMMETRY, PHOTOCHEMISTRY, AROMATICITY AND NON-
Course	CONVENTIONAL TECHNIQUES IN ORGANIC SYNTHESIS
Credits	4
Pre-	Basic knowledge on molecular orbitals, photochemistry and non- conventional techniques will
requisites,	be essential.
if any	
Course	The main objectives of this course are to:
Objectives	• Understand the concept of pericyclic reactions and analysis of the symmetry of the
	molecular orbitals to predict allowed and forbidden reactions.
	• Able to predict the con-rotatory and dis-rotatory electrocyclic ring- opening and ring- closure reactions along with stereochemical outcome of the reactions under thermal and photochemical conditions.
	 Understand the mechanisms of different types of pericyclic reaction: cycloadditions, electrocylic reactions, sigmatropic reactions and group transfer reactions.
	• Realize the concept of photochemistry and reactions along with synthetic utility of various Photochemical Reactions
	• To learn criteria for aromaticity and effect of structure on reactivity of the organic compounds
	• To understand basic principles (green chemistry/atom economy) and applications of non-
	conventional techniques and their comparison with conventional methods of organic synthesis
Course	On the successful completion of the course, student will be able to:
Outcomes	
CO 1	Learn about different aspects of pericyclic reactions and skills for the utilization of these reactions in the organic synthesis (K1-K5)
CO 2	Able to predict the relevant <i>con</i> -rotatory and <i>dis</i> -rotatory rotation in electrocyclic ring-opening and ring-closure reactions (K2-K4)
CO 3	To understand reaction feasibility and selectivity by applying the Woodward–Hoffmann rules
	(K1-K6)
CO 4	Understand the concepts of photochemistry and to study the synthesis & applications of
	various types of photochemical reactions (K1-K5)
CO 5	Able to identify aromatic, non-aromatic and anti-aromatic systems; To understand basic principles, importance and applications of non-conventional techniques (K1-K6)

Units		
Unit - I	BASIC CONCEPT OF MOLECULAR ORBITAL THEORY AND	(15 Hrs).
	PERICYCLIC REACTION IN ORGANIC REACTIONS	
Basic concep	t of conservation of orbital symmetry, electrocyclic and cycloaddition reaction	ns, correlation
diagram, FM	O, PMO treatment. Ring closure reaction focusing system such as butadiene, pen	tadienylanion
pentadienyl	cation, allyl anion, allyl cation, hexatriene, heptatrienyl cation, heptatrieny	l anion, and
octatetraene.	Application of electrocyclic reactions in synthesis of terpenes, steroids a	and alkaloids
Stereoselectiv	vity, regioselectivity, periselectivity and site selectivity in cycloaddition.	1,3- dipola
cycloaddition	, click reaction, $2 + 2$, $4 + 2$, $4 + 4$, $6 + 2$, and $6 + 4$ cycloaddition reactions. Sec	ondary orbita
interactions in	n cycloadditions.	
Normal and I	nverse electron demand Diels-Alder reaction.	
Unit- II	PERICYCLIC REACTION IN ORGANIC REACTIONS	(15 Hrs).
Sigmatropic	and Cheleotropic reactions, correlation diagram, FMO & PMO treatment. Hydrog	gen migration
Carbon migra	ation with symmetric and asymmetric centre. C-C bond migration, Orbital treatment	nent for Cope
Claisen and 2	,3-Sigmatropic reaction. Extrusion of CO2, CO, SO2 orbital symmetry treatment. A	applications o
Sigmatropic	and Cheleotropic reactions in organicsynthesis. Combination of cheleotropic	reaction with
cycloaddition		
Unit - III	ORGANIC PHOTOCHEMISTRY	(15 Hrs).
Organic phot	ochemistry: Principles of photochemistry, Fate of excited state: Physical and Chemi	cal process; [2
+ 2] photoche	emical cycloaddition; Paterno-Büchi reaction; Photochemistry of cyclohexadienones	s, Norrish typ
I & II reaction	ons. Oxidation and reduction reactions: Reaction with singlet oxygen. Selected rea	actions: Photo
Ed. D	di mathana ava fraza di mathana raarrangamanta	
Fries, Barton	di- π methane, oxa & aza di- π methane rearrangements	
Fries, Barton Unit - IV	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES	(15 Hrs).
Unit - IV		
Unit - IV	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES	
Unit - IV Aromaticity - annulenes.	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES	Aromaticity o
Unit - IV Aromaticity - annulenes. Basic princip	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES Study of benzenoid and non-benzenoids compounds in the light of Huckel's rule.	Aromaticity o
Unit - IV Aromaticity - annulenes. Basic princip reaction. Org	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES Study of benzenoid and non-benzenoids compounds in the light of Huckel's rule. les of non-conventional techniques: Microwave, Sonication, Ball-milling techniques	Aromaticity o
Unit - IV Aromaticity - annulenes. Basic princip reaction. Org	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES Study of benzenoid and non-benzenoids compounds in the light of Huckel's rule. A les of non-conventional techniques: Microwave, Sonication, Ball-milling technique anic reactions in aqueous phase; Ionic liquids and their applications in organic synthe lomino reactions in organic synthesis. Concept of green chemistry. Atom economy.	Aromaticity o
Unit - IV Aromaticity - annulenes. Basic princip reaction. Org cascade and o Contempora	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES Study of benzenoid and non-benzenoids compounds in the light of Huckel's rule. A les of non-conventional techniques: Microwave, Sonication, Ball-milling technique anic reactions in aqueous phase; Ionic liquids and their applications in organic synthe lomino reactions in organic synthesis. Concept of green chemistry. Atom economy.	Aromaticity o
Unit - IV Aromaticity - annulenes. Basic princip reaction. Org cascade and c Contempora Expert lecture	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES Study of benzenoid and non-benzenoids compounds in the light of Huckel's rule. A les of non-conventional techniques: Microwave, Sonication, Ball-milling technique anic reactions in aqueous phase; Ionic liquids and their applications in organic synthe lomino reactions in organic synthesis. Concept of green chemistry. Atom economy. ry Learning	Aromaticity o
Unit - IV Aromaticity - annulenes. Basic princip reaction. Org cascade and c Contempora Expert lecture	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES Study of benzenoid and non-benzenoids compounds in the light of Huckel's rule. A les of non-conventional techniques: Microwave, Sonication, Ball-milling technique anic reactions in aqueous phase; Ionic liquids and their applications in organic synthe lomino reactions in organic synthesis. Concept of green chemistry. Atom economy. ry Learning es, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars	Aromaticity of a second
Unit - IV Aromaticity - annulenes. Basic princip reaction. Org cascade and c Contempora Expert lecture – webinars for	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES Study of benzenoid and non-benzenoids compounds in the light of Huckel's rule. A les of non-conventional techniques: Microwave, Sonication, Ball-milling technique anic reactions in aqueous phase; Ionic liquids and their applications in organic synthe lomino reactions in organic synthesis. Concept of green chemistry. Atom economy. ry Learning es, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars r strengthening the subject matters. Assignment and class room seminar	Aromaticity of a second
Unit - IV Aromaticity - annulenes. Basic princip reaction. Org cascade and c Contempora Expert lecture – webinars for Reading List	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES Study of benzenoid and non-benzenoids compounds in the light of Huckel's rule. A les of non-conventional techniques: Microwave, Sonication, Ball-milling technique anic reactions in aqueous phase; Ionic liquids and their applications in organic synthe lomino reactions in organic synthesis. Concept of green chemistry. Atom economy. ry Learning es, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars r strengthening the subject matters. Assignment and class room seminar Total Lecture hours	Aromaticity of the second seco
Unit - IV Aromaticity - annulenes. Basic princip reaction. Org cascade and o Contempora Expert lecture – webinars for Reading List	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES Study of benzenoid and non-benzenoids compounds in the light of Huckel's rule. A les of non-conventional techniques: Microwave, Sonication, Ball-milling technique anic reactions in aqueous phase; Ionic liquids and their applications in organic synthe lomino reactions in organic synthesis. Concept of green chemistry. Atom economy. ry Learning es, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars r strengthening the subject matters. Assignment and class room seminar Total Lecture hours (Print and Online) Chemistry Portal: https://organic chemistry data.org/ hansreich/ resources/ pericy	Aromaticity of the second seco
Unit - IV Aromaticity - annulenes. Basic princip reaction. Org cascade and o Contempora Expert lecture – webinars for Reading List • Organic ericyclict	AROMATICITY AND NON-CONVENTIONAL TECHNIQUES Study of benzenoid and non-benzenoids compounds in the light of Huckel's rule. A les of non-conventional techniques: Microwave, Sonication, Ball-milling technique anic reactions in aqueous phase; Ionic liquids and their applications in organic synthe lomino reactions in organic synthesis. Concept of green chemistry. Atom economy. ry Learning es, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars r strengthening the subject matters. Assignment and class room seminar Total Lecture hours (Print and Online) Chemistry Portal: https://organic chemistry data.org/ hansreich/ resources/ pericy	Aromaticity of ues in organitesis. Tandem

- <u>https://nptel.ac.in/courses/104/106/104106077/</u>
- <u>https://nptel.ac.in/courses/104/105/104105038/</u>
- <u>https://courses.mookit.in/course/course009</u>

Recommended Text/Reference Books

- Singh, J (2019); Photochemistry and Pericyclic Reactions, New Age International Publishers.
- Sankararaman, S (2005); Pericyclic Reactions- A Textbook: Reactions, Applications and Theory, Wiley-VCH.
- Halton, B & Coxon, J. M (2011); Organic Photochemistry, Cambridge University Press.
- Kumar, S. Kumar, V & Singh, S. P (2015); Pericyclic Reactions, IEdition, Academic Press.
- Norman, R.O.C & Coxon, J. M (1993); Principles of Organic Synthesis, II Edition, CRC Press.
- Finar, I. L. (2002); Organic Chemistry Vol 2: Stereochemistry and the Chemistry of Natural product, 5th Edition, Pearson Education India. Bruice, P. Y. (2014); Organic Chemistry, 7th Edition, Dorling Kindersley Pvt Ltd
- Fleming, I (2009); Molecular Orbitals and Organic Chemical Reactions-Student Edition, Wiley.
- Carey, F. A. & Sundberg, R. J. (2008); Advanced Organic Chemistry-Part A and B, V Edition, Springer.
- <u>Clayden, J, Greeves, N, Warren, S & Wothers</u>, P (2000); Organic Chemistry, Oxford University Press.
- Warren, S (2008) Organic Synthesis, 2 Edition, Wiley.
- Corey, E. J & Cheng, X-M (1995); The Logics of Chemical Synthesis, I Edition, Wiley.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	М	L	S	S	М	L	М	L	М
CO2	М	М	L	S	S	М	М	L	L	L
CO3	L	М	М	S	М	М	L	L	L	М
CO4	М	М	М	S	S	М	М	L	L	S
CO5	L	М	М	S	М	L	М	L	L	S

Mapping with Programme Outcomes*

Course	Core								
Course Code	CHE C207								
Title of the	CHEMISTRY OF NATURAL PRODUCTS								
Course									
Credits	4								
Pre-requisites,	Students should know about the routine organic name reactions	Students should know about the routine organic name reactions and basic synthetic							
if any	transformations	transformations							
Course	• Understanding different types of Total Synthesis and their impo	rtance							
Objectives	• Realizing the importance of Natural Products and their Biologic	al Significance							
	• Acquiring knowledge to design any Targeted Synthesis								
	• Analyzing Retrosynthetic pattern and designing Total Synthesis	of natural products							
	• Understanding the role of key reaction in designing skeletal	framework of natural							
	products								
	• Understanding the biosynthetic pattern of natural products								
Course	On the successful completion of the course, student will be able to:								
Outcomes									
CO 1	Design retro-synthetic pattern of any given target compound (K1-K3)							
CO 2	Well versed with design and total synthesis of natural products (K2-H	(4)							
CO 3	Understand the significance of the key reactions in assembling s	skeletal framework of							
	natural products (K3-K5)								
CO 4	Learn about the synthetic utility of organic reactions to achieve	the total synthesis of							
	natural products (K2-K6)								
CO 5	Understand the biosynthetic pattern of any given natural products (K	2- K6)							
	2 -Understand; K3 -Apply; K4 -Analyze; K5 -Evaluate; K6 -Create								
Units									
Unit - I	ALKALOIDS	(15 Hrs).							
Total Synthesis of	of the following alkaloids: Preussin, Swainsonine, Horsifiline, Epiba	tidine, Camptothecin,							
Ellipticine, Ibogan	mine and Reserpine (Racemic as well as Chiral Syntheses wherever app	licable)							
Unit-II	STEROIDS	(15 Hrs).							
Total Synthesis	of Steroids: Androsterone, Testosterone, Estrone, Estradiol, 2-1	Methoxyestradiol and							
Progesterone (Ra	cemic as well as Chiral Synthesis wherever applicable). Conversion of	of Cholesterol into the							
above mentioned	steroids. Chiral as well as Racemic synthesis of Prostaglandins PGE1, I	PGE2 and PGE3							
Unit - III	TERPENES	(15 Hrs).							
Total Synthesis o	f Terpenes: Cedrene, Caryophyllene and Longifolene (Racemic as we	ell as Chiral Synthesis							
wherever applical	ble). Menthol, Hirsutene, Capnellene, Silphiperfolene and 5-Oxosilphi	perfolene (Racemic as							

Unit - IV	BIOSYNTHESIS	(15 Hrs).					
Biosynthesis of Alkaloids, Steroids, Terpenes and Prostaglandins.							
Contemporary I	Learning						
Expert lectures,	YouTube Videos, Animations, NPTEL, MOOC videos, on	line seminars - webinars for					
strengthening the	subject matters.						
Assignment and	class room seminar						
	Total Lecture hours	60 hours					
Reading List (P	rint and Online)						
• https://organi	icchemistrydata.org/hansreich/resources/syntheses/?page=a bsci	isic-acid-constantino%2F					
• <u>https://people</u>	e.chem.umass.edu/mcdaniel/chem269/experiments/trimyristir	n/Natural-product-synthesis-an-					
<u>art.pdf</u>							
• <u>https://author</u>	rs.library.caltech.edu/25034/31/BPOCchapter30.pdf						
• https://w3pha	arm.u-shizuoka-ken.ac.jp/~yakuzo/pass-eng/pdf-eng.html						
Recommended 7	Text/ Reference Books						
• Finar, I. L. V	Vol 2 (2018); Organic Chemistry: Stereochemistry and the Che	emistry of Natural product, III rd					
Edition, Pear	son						
• Carey, F. A.	& Sundberg, R. J. (2015); Advanced Organic Chemistry-Part	A & B, Vth Edition, Springer,					
ISBN 978-81	-322-0426-8						
• Norman R. C	D. C & Coxon, J. (2017); Principles of Organic Synthesis, 3 rd Ed	lition, CRC Press					
• Wyatt, P & V	Warren, S. (2013); Organic Synthesis: Strategy and Control, Wil	ley					
• Corey, E. J &	cheng, XM (2011); The Logics of Chemical Synthesis, VCE	H, ISBN: 978-81-265-3034-2					

• Nicolau, K. C & Sorenson, E. J (1996); Classics in Total Synthesis, VCH, ISBN: 978-3-527-29231-8

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	М	S	М	S	L	М	М	S
CO2	М	S	L	S	S	М	L	М	L	М
CO3	L	S	L	S	S	М	М	L	М	М
CO4	М	S	L	S	S	S	М	L	М	М
CO5	L	М	S	М	S	М	L	L	L	М

Mapping with Programme Outcomes*

Course	Elective (V)					
Course Code	CHE E204					
Title of the Course	MODERN SYNTHETIC METHODOLOGY AND SPECTROMETRIC IDENTIFICATION OF ORGANIC COMPOUNDS					
Credits	3					
Pre-requisites, if any	Basic idea about the concept of retrosynthetic analysis and synthetic utility of common organic reactions are essential. Interpretation of UV, IR, NMR and Mass spectral of simple organic compounds will be an added advantage.					
Course Objectives	 To understand the concept of retrosynthetic analysis which is heart of the organic synthesis To study about various types of 1,3-dipolar cycloaddition and cyclization methodologies 					
	 To study the concept of domino and tandem reactions along with theirsynthetic utility. The students are expected to learn organic spectroscopy techniques todetermine the structure of complex organic compounds To understand 2D-NMR techniques and interpretation for structurallycomplex Organic compounds. 					
Course	On the successful completion of the course, student will be able to:					
Outcomes						
CO 1	Understand the principles and application of tandem, cascade and dominoreactions in organic synthesis (K2-K6)					
CO 2	Apply of retrosynthetic analysis for synthesis of organic compounds (K2 andK3)					
CO 3	Understand the synthetic utility and applications of various types of cyclization as well as 1,3-dipolar cycloaddition reactions (K2-K6)					
CO 4	Student can able to solve the problems related to structure of organic compounds using spectral data (K1-K5) and apply organic spectroscopy knowledge to their research problems (K2-K4)					
CO 5	To differentiate isomeric compounds using 2 D NMR Spectra of Organic Compounds COSY (HSQC, HMBC) and NOESY (K2-K5)					
K1-Remember; K	2 -Understand; K3 -Apply; K4 -Analyze; K5 -Evaluate; K6 -Create					
Units						
Unit - I	RETROSYNTHESIS, CYCLIZATION & TANDEM REACTIONS (12 Hrs).					
Synthetic utility	or and donor)-Retrosynthetic analysis, Umpolung, Anti-thesis. of 1,3-dithiane and TOSMIC. Various types of cyclization and ring formation reaction: radical and transition metal mediated cyclizations. Concept of Tandem, cascade and domino ic synthesis.					

Unit - II	CYCLOADDITION & ANNULATION REACTIONS	(11 Hrs)
1,3-Dipolar c	cloaddition methodologies (Azide, nitrile oxide, azomethine ylides and carbo	onyl ylides
Annulation us	ing phosphorous Ylides. Sulfur and Sulfonium ylides and their reactions, C=C be	ond formin
reactions (With	ig, Wittig-Horner, Peterson and Julia olefination). Protective groups in Organic Synt	hesis
Unit - III	ADVANCED SPECTRAL TECHNIQUES FOR	(11 Hrs)
	STRUCTURAL CHARACTERIZATION OF ORGANIC COMPOUNDS	
	organic molecules-Types of electronic transitions and Substituent and Solvent effe	
C	nic compounds. Application of Woodward- Fieser rules for calculation of λ max values and λ max values of the second s	
	β -unsaturated ketones. IR spectroscopy–Position of IR absorption frequencies	•
	MR Spectroscopy- Interpretation of ¹ H and ¹³ C NMR and DEPT spectral data	
•	lustration of 2 D NMR Spectra of Organic Compounds COSY(HOMO, HETER	RO), HSQ
HMBC. NOE	and NOESY of Organic Compounds.	
Unit - IV	DETERMINATION OF STRUCTURE OF ORGANIC	(11 Hrs)
Unit - IV	DETERMINATION OF STRUCTURE OF ORGANIC COMPOUNDSUSING SPECTRAL DATA	(11 Hrs)
Interpretation		
Interpretation	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structur- ing UV, IR, NMR andMass spectral data.	
Interpretation compounds us Contemporar	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structur- ing UV, IR, NMR andMass spectral data.	
Interpretation compounds us Contemporar Expert lectures	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structuring UV, IR, NMR andMass spectral data. y Learning 15 hours	
Interpretation compounds us Contemporar Expert lectures	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structure ing UV, IR, NMR andMass spectral data. y Learning 15 hours s, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars	e of organ
Interpretation compounds us Contemporar Expert lectures – webinars for	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structuring UV, IR, NMR andMass spectral data. y Learning 15 hours s, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars strengthening the subject matters. Assignment and class room seminar	e of organ
Interpretation compounds us Contemporar Expert lectures – webinars for Reading List	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structuring UV, IR, NMR andMass spectral data. y Learning 15 hours s, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars strengthening the subject matters. Assignment and class room seminar Total Lecture hours	e of organ
Interpretation compounds us Contemporar Expert lectures – webinars for Reading List • <u>https://wy</u>	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structure ing UV, IR, NMR andMass spectral data. y Learning 15 hours s, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars strengthening the subject matters. Assignment and class room seminar Total Lecture hours (Print and Online)	e of organ
Interpretation compounds us Contemporar Expert lectures – webinars for Reading List • <u>https://ww</u>	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structure ing UV, IR, NMR andMass spectral data. y Learning 15 hours s, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars strengthening the subject matters. Assignment and class room seminar Total Lecture hours (Print and Online) vw.slideshare.net/guest824336/introduction-to-spectroscopy	e of organ
Interpretation compounds us Contemporar Expert lectures – webinars for Reading List • <u>https://ww</u> • <u>https://ww</u>	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structure ing UV, IR, NMR andMass spectral data. y Learning 15 hours s, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars strengthening the subject matters. Assignment and class room seminar Total Lecture hours (Print and Online) vw.slideshare.net/guest824336/introduction-to-spectroscopy tel.ac.in/courses/104/105/104105087/	e of organ
Interpretation compounds us Contemporar Expert lectures – webinars for Reading List • <u>https://ww</u> • <u>https://ww</u>	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structure ing UV, IR, NMR andMass spectral data. y Learning 15 hours s, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars strengthening the subject matters. Assignment and class room seminar Total Lecture hours (Print and Online) vw.slideshare.net/guest824336/introduction-to-spectroscopy tel.ac.in/courses/104/105/104105087/ vw.youtube.com/watch?v=WKP0m1DuBag	e of organ
Interpretation compounds us Contemporar Expert lectures – webinars for Reading List • <u>https://ww</u> • <u>https://ww</u> • <u>https://ww</u>	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structure ing UV, IR, NMR andMass spectral data. y Learning 15 hours s, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars strengthening the subject matters. Assignment and class room seminar Total Lecture hours (Print and Online) vw.slideshare.net/guest824336/introduction-to-spectroscopy tel.ac.in/courses/104/105/104105087/ vw.youtube.com/watch?v=WKP0m1DuBag vw.youtube.com/watch?v=0_AxTPOHsuA	e of organ 45 hours
Interpretation compounds us Contemporar Expert lectures – webinars for Reading List • <u>https://ww</u> • <u>https://ww</u> • <u>https://ww</u>	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structure ing UV, IR, NMR andMass spectral data. y Learning 15 hours s, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars strengthening the subject matters. Assignment and class room seminar Total Lecture hours (Print and Online) vw.slideshare.net/guest824336/introduction-to-spectroscopy tel.ac.in/courses/104/105/104105087/ vw.youtube.com/watch?v=WKP0m1DuBag vw.youtube.com/watch?v=0_AxTP0HsuA vw.youtube.com/watch?v=umgfQyQCLSQ	e of organ 45 hours
Interpretation compounds us Contemporar Expert lectures – webinars for Reading List • <u>https://ww</u> • <u>https://ww</u> • <u>https://ww</u> • <u>https://ww</u> • <u>https://ww</u>	COMPOUNDSUSING SPECTRAL DATA of mass spectral splitting pattern of organic compounds– Determination of structuring UV, IR, NMR andMass spectral data. y Learning 15 hours s, YouTube Videos, Animations, NPTEL, MOOC videos, online seminars strengthening the subject matters. Assignment and class room seminar Total Lecture hours (Print and Online) vw.slideshare.net/guest824336/introduction-to-spectroscopy tel.ac.in/courses/104/105/104105087/ vw.youtube.com/watch?v=0_AxTP0HsuA vw.youtube.com/watch?v=0_AxTP0HsuA vw.youtube.com/watch?v=0_AxTP0HsuA vw.slideshare.net/anthonycrasto64/2d-nmr-organic- spectroscopy-by-dr-anthony-crastophy-dr-anthy-dr-anthy-dr-anthy-dr-anthony-crastophy-dr-anthy-dr-anthy-dr-an	e of organ 45 hours

Recommended Text/ Reference Books

- Carey, F. A. & Sund berg, R. J. (2015); Advanced Organic Chemistry-PartA & B, Vth Edition Springer, ISBN 978-81-322-0426-8
- Norman R. O. C & Coxon, J. (2017); Principles of Organic Synthesis, 3rdEdition, CRC Press
- Wyatt, P & Warren, S. (2013); Organic Synthesis: Strategy and Control, Wiley
- Kalsi, P. S (2017); Organic Synthesis through Disconnection Approach, ISBN-13: 978-938599846
- Warren, S. & Wyat. P. (2008); Organic Synthesis: Disconnection Approach, II Edition, Wiley
- Corey, E. J & Cheng, X.-M (2011); The Logics of Chemical Synthesis, VCH, ISBN: 978-81-265-3034-2
- Silverstein, R. M, Webster, F. X, Kiemble, D. J, Bryce, D. L (2015); Spectrometric Identification of Organic Compounds, 8th Edition, Wiley
- Pavia, L, Lapman, G. M, Kriz, S, Vyvyan, J.-R (2015); Introduction to Spectroscopy, Cengage Learning, ISBN 13: 978-81-315-2916-4
- Lambert, J. B, Shurvell, H. F, Lightner, D. A, Graham Cooks, R (1998);Organic Structural Spectroscopy, Prentice Hall, ISBN: 0-13-258690-8
- Macomber, R. S (1998); A complete introduction to Modern NMR Spectroscopy, John Wiley, ISBN: 0-471-15736-8

Mapping with Programme Outcomes*

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	М	S	М	S	М	М	М	М
CO2	М	М	L	S	S	М	L	М	L	L
CO3	S	S	L	S	S	S	L	L	М	L
CO4	М	S	S	S	S	S	М	L	М	S
CO5	L	S	М	S	S	М	L	L	L	М

Course	Elective (VI)
Course Code	CHE E603
Title of the	NOVEL REAGENTS IN ORGANIC SYNTHESIS
Course	
Credits	3
Pre-requisites,	Students should learn about the basics of metal-catalyzed organic synthesis, including
if any	understanding mechanism, role of catalyst and other additives. In addition, students must
	be aware of the difference in the reaction mechanism involving typical organic reaction Vs carbon-metal catalyzed reaction.
Course	• To understand various types of metal-catalyzed organic syntheses, including Ring
Objectives	Closing Metathesis, synthesis of cyclic and acyclic molecules, new carbon-carbon & C-N bond formation and C-H activation.
	• To know utility of silicon compounds in the generation of reactive diene like ortho- quinodimethane and its application.
	• To understand the mechanism and synthetic application of trifluoromethylation using Ruppert-Prakash reagent
	• To study the correlation between structure, properties and reactivity of various types metal carbon bond compounds
	• Understanding the homogeneous and heterogeneous metal-carbon bond catalyzed reactions and their mechanism
Course	On the successful completion of the course, the students will acquire knowledge of:
Outcomes	
CO 1	Metal-catalyzed organic reactions and their synthetic utility (K1-K4)
CO 2	Study the various types of carbon-carbon formation reactions and synthesis of cyclic and acyclic frameworks (K2-K5)
CO 3	To study specific reaction by comparing theoretical and/or experimental data (K2-K4)
CO 4	To get new ideas or innovation in the field of organometallic chemistry and their
	applications in organic synthesis (K1-K6)
CO 5	To design suitable organometallic compounds for activation of highly stable and
	symmetrical molecules such as CO2 and methane for the synthesis of industrially important intermediates/compounds (K3-K6)
K1-Remember; K	X2 -Understand; K3- Apply; K4 -Analyze; K5 -Evaluate; K6 -Create

Unit - I	APPLICATION OF FOLLOWING D & P BLOCK	(12 Hrs).
	ELEMENTS IN ORGANIC SYNTHESIS	
Synthetic utility	of Samarium iodide, Ruthenium (Ring Closing Metathesis- RCM)	Zirconium (Schwartz's
reagent) and Co	balt (Pauson-Khand reaction and Nicholas reaction) in organic s	synthesis. Asymmetrie
Reformatsky read	tion using Samarium. Homogeneous hydrogenation. Application o	f Titanium in organio
synthesis – Mc M	lurry coupling. Tin in organic synthesis. Use of – Bu3SnH and Tin n	nediated carbon-carbon
bond formation in	the synthesis of cyclic and acyclic molecules.	
Unit - II	ROLE OF PALLADIUM AND NICKEL CATALYST IN	(11 Hrs).
	ORGANIC REACTIONS.	
Both Pd(0), Ni(0)	and Pd(II), Ni(II) complexes are included. Typical reaction involving	Heck, Negishi, Suzuki
Miyaura, Kumada	, Sonogashira, Stille and Hiyama coupling for the carbon-carbon bond	l formation. Buchwald
Hartwig coupling	for the carbon-heteroatom bond formation	
reactions. Transiti	on-metal catalyzed C- H bond activation in organic synthesis.	
Unit - III	SILICON COMPOUNDS	(11 Hrs).
Use of trimethyls	ilyl chloride and t-butyldimethylsilyl chloride as a productive group	. Use of trimethylsily
		5 5
iodide and trimeth	nylsilyl cyanide. Vinylsilanes-Silyl Peterson olefination reaction. Trich	
	nylsilyl cyanide. Vinylsilanes-Silyl Peterson olefination reaction. Triching agents. Role of trimethylsilyl group in the generation of reaction of reaction.	loro silane and triethy
silane as reducir		nloro silane and triethy tive diene like ortho
silane as reducir quinodimethane.	g agents. Role of trimethylsilyl group in the generation of reac	nloro silane and triethy tive diene like ortho on using lithium organo
silane as reducir quinodimethane. cuprates (Gilman	In g agents. Role of trimethylsilyl group in the generation of reaction and reactions of α and β silyl-carbanions. Conjugate addition	nloro silane and triethy tive diene like ortho on using lithium organo
silane as reducir quinodimethane. cuprates (Gilman	ag agents. Role of trimethylsilyl group in the generation of react Generation and reactions of α and β silyl-carbanions. Conjugate addition's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and ac	nloro silane and triethy tive diene like ortho on using lithium organo
silane as reducir quinodimethane. cuprates (Gilman dithiane. Trifluoro Unit - IV	ag agents. Role of trimethylsilyl group in the generation of react Generation and reactions of α and β silyl-carbanions. Conjugate addition's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and accomethylation using Ruppert-Prakash reagent.	nloro silane and triethy tive diene like ortho on using lithium organe cid synthesis from 1,7 (11 Hrs).
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal	ag agents. Role of trimethylsilyl group in the generation of react Generation and reactions of α and β silyl-carbanions. Conjugate addition's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and ac omethylation using Ruppert-Prakash reagent. METAL CARBONYL REACTIONS	aloro silane and triethy tive diene like ortho on using lithium organic cid synthesis from 1, (11 Hrs).
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal CO insertion, CO	ag agents. Role of trimethylsilyl group in the generation of react Generation and reactions of α and β silyl-carbanions. Conjugate addition 's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and ac omethylation using Ruppert-Prakash reagent. METAL CARBONYL REACTIONS carbonyls, cis-labilising effect, metal-metal bonded carbonyl and clu	aloro silane and triethy tive diene like ortho on using lithium organic cid synthesis from 1, (11 Hrs). Ister-insertion reaction carbon hydrogen bond
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal CO insertion, CO activation-Oxo re	ag agents. Role of trimethylsilyl group in the generation of react Generation and reactions of α and β silyl-carbanions. Conjugate addition 's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and ac omethylation using Ruppert-Prakash reagent. METAL CARBONYL REACTIONS carbonyls, cis-labilising effect, metal-metal bonded carbonyl and clu D2 insertion, SO2 insertion, methyl migration, phenyl migration, c	hloro silane and triethy tive diene like ortho on using lithium organic cid synthesis from 1,7 (11 Hrs). (11 Hrs). (arbon hydrogen bond on of metal carbonyls
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal CO insertion, CO activation-Oxo re	ag agents. Role of trimethylsilyl group in the generation of react Generation and reactions of α and β silyl-carbanions. Conjugate addition 's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and action omethylation using Ruppert-Prakash reagent. METAL CARBONYL REACTIONS carbonyls, cis-labilising effect, metal-metal bonded carbonyl and clu 20 insertion, SO2 insertion, methyl migration, phenyl migration, c action, Wacker process and Reppe synthesis- photochemical reaction	aloro silane and triethy tive diene like ortho on using lithium organi- cid synthesis from 1, (11 Hrs). (11 Hrs). (ster-insertion reaction carbon hydrogen bon- on of metal carbonyls
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal CO insertion, CO activation-Oxo re Chromium, Mang	ag agents. Role of trimethylsilyl group in the generation of react Generation and reactions of α and β silyl-carbanions. Conjugate addition 's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and ac omethylation using Ruppert-Prakash reagent. METAL CARBONYL REACTIONS carbonyls, cis-labilising effect, metal-metal bonded carbonyl and clu 02 insertion, SO2 insertion, methyl migration, phenyl migration, c action, Wacker process and Reppe synthesis- photochemical reaction anese, Iron, Rhenium and Ruthenium. Oxidative addition-Hydrogen, o	hloro silane and triethy tive diene like ortho on using lithium organic cid synthesis from 1,7 (11 Hrs). (11 Hrs). (arbon hydrogen bond on of metal carbonyls
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal CO insertion, CO activation-Oxo re Chromium, Mang Tropsh process. Contemporary L	ag agents. Role of trimethylsilyl group in the generation of react Generation and reactions of α and β silyl-carbanions. Conjugate addition 's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and ac omethylation using Ruppert-Prakash reagent. METAL CARBONYL REACTIONS carbonyls, cis-labilising effect, metal-metal bonded carbonyl and clu 02 insertion, SO2 insertion, methyl migration, phenyl migration, c action, Wacker process and Reppe synthesis- photochemical reaction anese, Iron, Rhenium and Ruthenium. Oxidative addition-Hydrogen, o	aloro silane and triethy tive diene like ortho on using lithium organe cid synthesis from 1,3 (11 Hrs). (11 Hrs). uster-insertion reaction carbon hydrogen bond on of metal carbonyls organic halides- Fische
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal CO insertion, CO activation-Oxo re Chromium, Mang Tropsh process. Contemporary L Expert lectures,	ag agents. Role of trimethylsilyl group in the generation of react Generation and reactions of α and β silyl-carbanions. Conjugate addition 's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and act omethylation using Ruppert-Prakash reagent.METAL CARBONYL REACTIONS carbonyls, cis-labilising effect, metal-metal bonded carbonyl and clu 02 insertion, SO2 insertion, methyl migration, phenyl migration, c action, Wacker process and Reppe synthesis- photochemical reaction anese, Iron, Rhenium and Ruthenium. Oxidative addition-Hydrogen, oearning15 hours	aloro silane and triethy tive diene like ortho on using lithium organic cid synthesis from 1, (11 Hrs). (11 Hrs). uster-insertion reaction carbon hydrogen bondon of metal carbonyls organic halides- Fische
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal CO insertion, CO activation-Oxo re Chromium, Mang Tropsh process. Contemporary L Expert lectures,	ag agents. Role of trimethylsilyl group in the generation of reactGeneration and reactions of α and β silyl-carbanions. Conjugate addition's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and actomethylation using Ruppert-Prakash reagent.METAL CARBONYL REACTIONScarbonyls, cis-labilising effect, metal-metal bonded carbonyl and clu02 insertion, SO2 insertion, methyl migration, phenyl migration, caction, Wacker process and Reppe synthesis- photochemical reactionanese, Iron, Rhenium and Ruthenium. Oxidative addition-Hydrogen, oearning15 hoursYouTube Videos, Animations, NPTEL, MOOC videos, online ser	aloro silane and triethy tive diene like ortho on using lithium organe cid synthesis from 1,3 (11 Hrs). (11 Hrs). uster-insertion reaction carbon hydrogen bond on of metal carbonyls organic halides- Fische
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal CO insertion, CO activation-Oxo re Chromium, Mang Tropsh process. Contemporary L Expert lectures,	In the second secon	nloro silane and triethy tive diene like ortho on using lithium organe cid synthesis from 1, (11 Hrs). (11 Hrs). Inster-insertion reaction carbon hydrogen bond on of metal carbonyls organic halides- Fische
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal CO insertion, CO activation-Oxo re Chromium, Mang Tropsh process. Contemporary L Expert lectures, strengthening the Reading List (Pr	In the second secon	nloro silane and triethy tive diene like ortho on using lithium organic cid synthesis from 1, (11 Hrs). (11 Hrs). Inster-insertion reaction carbon hydrogen bond on of metal carbonyls organic halides- Fischer ninars – webinars for
silane as reducir quinodimethane. (cuprates (Gilman dithiane. Trifluoro Unit - IV Substituted metal CO insertion, CO activation-Oxo re Chromium, Mang Tropsh process. Contemporary L Expert lectures, strengthening the Reading List (Pr • <u>https://www.</u>	g agents. Role of trimethylsilyl group in the generation of react Generation and reactions of α and β silyl-carbanions. Conjugate addition 's reagent) 1,2 vs 1,4 addition. Umpolung-aldehyde ketone and act omethylation using Ruppert-Prakash reagent.METAL CARBONYL REACTIONS carbonyls, cis-labilising effect, metal-metal bonded carbonyl and clu D2 insertion, SO2 insertion, methyl migration, phenyl migration, c action, Wacker process and Reppe synthesis- photochemical reaction anese, Iron, Rhenium and Ruthenium. Oxidative addition-Hydrogen, oearning15 hours YouTube Videos, Animations, NPTEL, MOOC videos, online ser subject matters. Assignment and class room seminarTotal Lecture hoursint and Online)	nloro silane and triethy tive diene like ortho on using lithium organic cid synthesis from 1, (11 Hrs). (11 Hrs). Inster-insertion reaction carbon hydrogen bond on of metal carbonyls organic halides- Fischer ninars – webinars for

Recommended Text/Reference Books

- Colvin, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, <u>Elsevier</u>
- Carruthers, W. (2015); Modern Methods of Organic Synthesis, 4th Edition, Cambridge University Press
- Smith,M, (2016); Organic Synthesis, 4th Edition, Academic Press
- Huheey, J. E, (2014); Inorganic Chemistry, 4th Edition, Pearson
- Purcell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1st Edition, Thomson Learning
- Weber, W. P. (1983); Silicon Reagents for Organic Synthesis, Springer- Verlag, ISBN 978-3-642-68661-0
- Tsuji, J. (2004); Palladium Reagents and Catalysts, Wiley, ISBN: 978-0-470-85032-9
- Hegedus, L. S. (2009); Transition Metals in the Synthesis of Complex Organic Molecules, 3rd Edition, University Science Books
- Crabtree. R. H. (2019); The Organometallic Chemistry of the Transition Metals, Wiley

Mapping with Programme Outcomes*

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	L	S	М	М	М	М	L	L
CO2	М	М	М	S	S	М	М	L	М	М
CO3	М	М	М	М	S	М	S	L	М	L
CO4	L	М	L	S	М	L	М	М	L	L
CO5	М	М	М	S	М	L	М	L	М	М

Core/	Course	Title of the Course – Soft skill	Credits						
Elective/	Code								
Supportive									
Supportive	UOMS117	CHEMISTRY DATABASES – SCIFINDER, MENDELEY,	2						
		SCOPUS, WEB OF SCIENCE AND GOOGLE SCHOLAR							
Course Obje	ctives:								
The main obj	ectives of this co	burse are,							
• To analy article.	• To analyze, categorize and refine the Scifinder database based on the different components of research article.								
• To learn	• To learn Mendeley for the management of references and Scopus for analysis of research database.								
• To train	Web of Science	ce and Google Scholar database to analyze, categorize and refine th	ne different						
	ents of research								
• To know	v the systematic	procedure for collecting literature in the identified research area usin	g scientific						
resource	-								
• To deve	lop skill for crea	ting a new synthetic scheme or protocol based on the literature search.							
Pre-requisite	<u>^</u>								
Students shou	ild know the cor	nponents of journal and research article.							
Course Outc									
•		se successfully, the students will be able to,							
		omponents of research article and literature search. (K1)							
		nportance of SciFinder, Mendeley, Scopus, Web of Science and Google	e Scholar in						
scientifi	c data collection	. (K2)							
	apply the system scientific resou	matic procedure for collecting literature in the identified research rces. (K3)	area using						
• CO4: A	nalyze and Eva	luate research problems using different scientific data collection reso	ources. (K4						
and K5)									
• CO5: (Create new resea	rch problems using the systematic collection of literatures. (K6)							
K1 - Rememl	ber; K2 - Unders	stand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create							
UNITS	UNITS								
UNIT - I: Sc	iFinder Databa	se (6 Hours)							
Components	of SciFinder, A	nalyzing, Categorizing and Refining the Scifinder database based o	n Research						
topic, Author	name, Compar	ny name, Molecular formula, Molecular structure, Chemical reaction	n, Journals,						
Patents, Phys	ical Properties. I	Importance of Scifinder database in planning a research problem.							

UNIT - II: Mendeley

Mendeley Reference Manager - Application; Reference file - Collection, Insertion, Library organization, Notebook; Citation database - analyze- visualize - research. h- Index, h- graph Cite Score, SJR (SCImago Journal Rank) and SNIP (Source Normalized Impact Paper). ORCHID, Citable documents, Citations, Self Citations - Document types- Alternative Metrics. Overview, citations, Scholarly commentary, Citation Benchmarking, Advanced Search,

UNIT - III: Scopus

Components of Scopus, Analyzing, Categorizing and Refining the Scopus database based on different options. Importance of Scopus database in planning a research problem. Proximity characters in Scopus.

UNIT - IV: Web of Science

Web of Science - History, Components of Web of Science, Analyzing, Categorizing and Refining the Web of Science database based on different options. Importance of Web of Science database in planning a research problem.

UNIT-V: Google Scholar

Google Scholar – History, Features and specifications, Ranking algorithm, Groups and access to literature -Limitations and citations, Search engine. Citations, H-index and i10 index - Keywords search - Steps to create google scholar ID and Addition/Removal of articles - Profile updates - My library- Metrics- Alerts -Merits and Demerits of Google Scholar ID.

References:

- 1. https://www.cas.org/support/training/scifinder
- 2. https://www.cas.org/sites/default/files/documents/scifinder search references workbook.pdf
- 3. https://www.mendeley.com/reference-management/mendeley-cite
- 4. https://www.elsevier.com/solutions/scopus
- 5. https://clarivate.libguides.com/webofscienceplatform/alldb
- 6. Jensenius, F., Htun, M., Samuels, D., Singer, D., Lawrence, A., & Chwe, M. (2018). "The Benefits and Pitfalls of Google Scholar" PS: Political Science & Politics, 51(4), 820-824.

Mapping with Programme Outcomes: (S-Strong, M-Medium, L-Low)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	М	S	L	М	S	S	S	М	М	L
CO 2	S	М	S	L	L	М	S	М	L	S
CO 3	М	S	L	М	S	М	S	М	М	S
CO 4	S	S	М	S	М	S	S	L	S	М
CO 5	S	М	S	М	S	S	М	М	М	L

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)